# 7.3 Unit circle  (Page 7/11)

 Page 7 / 11

Access these online resources for additional instruction and practice with sine and cosine functions.

## Key equations

 Cosine $\mathrm{cos}\text{\hspace{0.17em}}t=x$ Sine $\mathrm{sin}\text{\hspace{0.17em}}t=y$ Pythagorean Identity ${\mathrm{cos}}^{2}t+{\mathrm{sin}}^{2}t=1$

## Key concepts

• Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin and has a radius of 1 unit.
• Using the unit circle, the sine of an angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ equals the y -value of the endpoint on the unit circle of an arc of length $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ whereas the cosine of an angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ equals the x -value of the endpoint. See [link] .
• The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an axis. See [link] .
• When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity is also useful for determining the sines and cosines of special angles. See [link] .
• Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering information is known. See [link] .
• The domain of the sine and cosine functions is all real numbers.
• The range of both the sine and cosine functions is $\text{\hspace{0.17em}}\left[-1,1\right].$
• The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
• The signs of the sine and cosine are determined from the x - and y -values in the quadrant of the original angle.
• An angle’s reference angle is the size angle, $\text{\hspace{0.17em}}t,$ formed by the terminal side of the angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ and the horizontal axis. See [link] .
• Reference angles can be used to find the sine and cosine of the original angle. See [link] .
• Reference angles can also be used to find the coordinates of a point on a circle. See [link] .

## Verbal

Describe the unit circle.

The unit circle is a circle of radius 1 centered at the origin.

What do the x- and y- coordinates of the points on the unit circle represent?

Discuss the difference between a coterminal angle and a reference angle.

Coterminal angles are angles that share the same terminal side. A reference angle is the size of the smallest acute angle, $\text{\hspace{0.17em}}t,$ formed by the terminal side of the angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ and the horizontal axis.

Explain how the cosine of an angle in the second quadrant differs from the cosine of its reference angle in the unit circle.

Explain how the sine of an angle in the second quadrant differs from the sine of its reference angle in the unit circle.

The sine values are equal.

## Algebraic

For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the terminal point determined by $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ lies.

$\text{sin}\left(t\right)<0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\text{cos}\left(t\right)<0$

$\text{sin}\left(t\right)>0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\left(t\right)>0$

I

$\text{sin}\left(t\right)>0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\left(t\right)<0$

$\text{sin}\left(t\right)>0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{cos}\left(t\right)>0$

IV

For the following exercises, find the exact value of each trigonometric function.

$\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{2}$

$\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{3}$

$\frac{\sqrt{3}}{2}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{2}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{3}$

$\frac{1}{2}$

$\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{4}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{4}$

$\frac{\sqrt{2}}{2}$

$\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{6}$

$\mathrm{sin}\text{\hspace{0.17em}}\pi$

0

$\mathrm{sin}\text{\hspace{0.17em}}\frac{3\pi }{2}$

$\mathrm{cos}\text{\hspace{0.17em}}\pi$

-1

$\mathrm{cos}\text{\hspace{0.17em}}0$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{6}$

$\frac{\sqrt{3}}{2}$

find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy