# 7.4 The other trigonometric functions

 Page 1 / 14
In this section you will:
• Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of $\text{\hspace{0.17em}}\frac{\pi }{3},\frac{\pi }{4},$ and $\text{\hspace{0.17em}}\frac{\pi }{6}.$
• Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
• Use properties of even and odd trigonometric functions.
• Recognize and use fundamental identities.
• Evaluate trigonometric functions with a calculator.

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is $\text{\hspace{0.17em}}\frac{1}{12}\text{\hspace{0.17em}}$ or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.

## Finding exact values of the trigonometric functions secant, cosecant, tangent, and cotangent

We can also define the remaining functions in terms of the unit circle with a point $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ corresponding to an angle of $\text{\hspace{0.17em}}t,$ as shown in [link] . As with the sine and cosine, we can use the $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ coordinates to find the other functions.

The first function we will define is the tangent. The tangent    of an angle is the ratio of the y -value to the x -value of the corresponding point on the unit circle. In [link] , the tangent of angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to $\text{\hspace{0.17em}}\frac{y}{x},x\ne 0.\text{\hspace{0.17em}}$ Because the y -value is equal to the sine of $\text{\hspace{0.17em}}t,$ and the x -value is equal to the cosine of $\text{\hspace{0.17em}}t,$ the tangent of angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ can also be defined as $\text{\hspace{0.17em}}\frac{\mathrm{sin}\text{\hspace{0.17em}}t}{\mathrm{cos}\text{\hspace{0.17em}}t},\mathrm{cos}\text{\hspace{0.17em}}t\ne 0.\text{\hspace{0.17em}}$ The tangent function is abbreviated as $\text{\hspace{0.17em}}\text{tan}\text{.}\text{\hspace{0.17em}}$ The remaining three functions can all be expressed as reciprocals of functions we have already defined.

• The secant    function is the reciprocal of the cosine function. In [link] , the secant of angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to $\text{\hspace{0.17em}}\frac{1}{\mathrm{cos}\text{\hspace{0.17em}}t}=\frac{1}{x},x\ne 0.\text{\hspace{0.17em}}$ The secant function is abbreviated as $\text{\hspace{0.17em}}\text{sec}\text{.}$
• The cotangent    function is the reciprocal of the tangent function. In [link] , the cotangent of angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to $\text{\hspace{0.17em}}\frac{\mathrm{cos}\text{\hspace{0.17em}}t}{\mathrm{sin}\text{\hspace{0.17em}}t}=\frac{x}{y},y\ne 0.\text{\hspace{0.17em}}$ The cotangent function is abbreviated as $\text{\hspace{0.17em}}\text{cot}\text{.}$
• The cosecant    function is the reciprocal of the sine function. In [link] , the cosecant of angle $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to $\text{\hspace{0.17em}}\frac{1}{\mathrm{sin}\text{\hspace{0.17em}}t}=\frac{1}{y},y\ne 0.\text{\hspace{0.17em}}$ The cosecant function is abbreviated as $\text{\hspace{0.17em}}\text{csc}\text{.}$

## Tangent, secant, cosecant, and cotangent functions

If $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is a real number and $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ is a point where the terminal side of an angle of $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ radians intercepts the unit circle, then

## Finding trigonometric functions from a point on the unit circle

The point $\text{\hspace{0.17em}}\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)\text{\hspace{0.17em}}$ is on the unit circle, as shown in [link] . Find $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}t,\mathrm{cos}\text{\hspace{0.17em}}t,\mathrm{tan}\text{\hspace{0.17em}}t,\mathrm{sec}\text{\hspace{0.17em}}t,\mathrm{csc}\text{\hspace{0.17em}}t,$ and $\text{\hspace{0.17em}}\mathrm{cot}\text{\hspace{0.17em}}t.$

Because we know the $\text{\hspace{0.17em}}\left(x,y\right)\text{\hspace{0.17em}}$ coordinates of the point on the unit circle indicated by angle $\text{\hspace{0.17em}}t,$ we can use those coordinates to find the six functions:

#### Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications? By  By       By Anonymous User By