# 7.3 Unit circle  (Page 8/11)

 Page 8 / 11

$\mathrm{sin}\text{\hspace{0.17em}}0$

## Numeric

For the following exercises, state the reference angle for the given angle.

$240°$

$60°$

$-170°$

$100°$

$80°$

$-315°$

$135°$

$45°$

$\frac{5\pi }{4}$

$\frac{2\pi }{3}$

$\frac{\pi }{3}$

$\frac{5\pi }{6}$

$\frac{-11\pi }{3}$

$\frac{\pi }{3}$

$\frac{-7\pi }{4}$

$\frac{-\pi }{8}$

$\frac{\pi }{8}$

For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of each angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.

$225°$

$300°$

$60°,$ Quadrant IV, $\text{\hspace{0.17em}}\text{sin}\left(300°\right)=-\frac{\sqrt{3}}{2},\mathrm{cos}\left(300°\right)=\frac{1}{2}$

$320°$

$135°$

$45°,$ Quadrant II, $\text{sin}\left(135°\right)=\frac{\sqrt{2}}{2},\mathrm{cos}\left(135°\right)=-\frac{\sqrt{2}}{2}$

$210°$

$120°$

Quadrant II, $\text{\hspace{0.17em}}\text{sin}\left(120°\right)=\frac{\sqrt{3}}{2},\mathrm{cos}\left(120°\right)=-\frac{1}{2}$

$250°$

$150°$

$30°,$ Quadrant II, $\text{\hspace{0.17em}}\text{sin}\left(150°\right)=\frac{1}{2},\mathrm{cos}\left(150°\right)=-\frac{\sqrt{3}}{2}$

$\frac{5\pi }{4}$

$\frac{7\pi }{6}$

$\frac{\pi }{6},$ Quadrant III, $\text{\hspace{0.17em}}\text{sin}\left(\frac{7\pi }{6}\right)=-\frac{1}{2},\mathrm{cos}\left(\frac{7\pi }{6}\right)=-\frac{\sqrt{3}}{2}$

$\frac{5\pi }{3}$

$\frac{3\pi }{4}$

$\frac{\pi }{4},$ Quadrant II, $\text{\hspace{0.17em}}\text{sin}\left(\frac{3\pi }{4}\right)=\frac{\sqrt{2}}{2},\mathrm{cos}\left(\frac{4\pi }{3}\right)=-\frac{\sqrt[]{2}}{2}$

$\frac{4\pi }{3}$

$\frac{2\pi }{3}$

$\frac{\pi }{3},$ Quadrant II, $\text{\hspace{0.17em}}\text{sin}\left(\frac{2\pi }{3}\right)=\frac{\sqrt{3}}{2},\mathrm{cos}\left(\frac{2\pi }{3}\right)=-\frac{1}{2}$

$\frac{5\pi }{6}$

$\frac{7\pi }{4}$

$\frac{\pi }{4},$ Quadrant IV, $\text{\hspace{0.17em}}\text{sin}\left(\frac{7\pi }{4}\right)=-\frac{\sqrt{2}}{2},\text{cos}\left(\frac{7\pi }{4}\right)=\frac{\sqrt{2}}{2}$

For the following exercises, find the requested value.

If $\text{\hspace{0.17em}}\text{cos}\left(t\right)=\frac{1}{7}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is in the fourth quadrant, find $\text{\hspace{0.17em}}\text{sin}\left(t\right).$

If $\text{\hspace{0.17em}}\text{cos}\left(t\right)=\frac{2}{9}\text{\hspace{0.17em}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is in the first quadrant, find $\text{\hspace{0.17em}}\text{sin}\left(t\right).$

$\frac{\sqrt{77}}{9}$

If $\text{\hspace{0.17em}}\text{sin}\left(t\right)=\frac{3}{8}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is in the second quadrant, find $\text{\hspace{0.17em}}\text{cos}\left(t\right).$

If $\text{\hspace{0.17em}}\text{sin}\left(t\right)=-\frac{1}{4}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is in the third quadrant, find $\text{\hspace{0.17em}}\text{cos}\left(t\right).$

$-\frac{\sqrt{15}}{4}$

Find the coordinates of the point on a circle with radius 15 corresponding to an angle of $\text{\hspace{0.17em}}220°.$

Find the coordinates of the point on a circle with radius 20 corresponding to an angle of $\text{\hspace{0.17em}}120°.$

Find the coordinates of the point on a circle with radius 8 corresponding to an angle of $\text{\hspace{0.17em}}\frac{7\pi }{4}.$

Find the coordinates of the point on a circle with radius 16 corresponding to an angle of $\text{\hspace{0.17em}}\frac{5\pi }{9}.$

State the domain of the sine and cosine functions.

State the range of the sine and cosine functions.

## Graphical

For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of $\text{\hspace{0.17em}}t.$

$\mathrm{sin}t=\frac{1}{2},\mathrm{cos}t=-\frac{\sqrt{3}}{2}$

$\mathrm{sin}t=-\frac{\sqrt{2}}{2},\mathrm{cos}t=-\frac{\sqrt{2}}{2}$

$\mathrm{sin}t=\frac{\sqrt{3}}{2},\mathrm{cos}t=-\frac{1}{2}$

$\mathrm{sin}t=-\frac{\sqrt{2}}{2},\mathrm{cos}t=\frac{\sqrt{2}}{2}$

$\mathrm{sin}t=\frac{1}{2},\mathrm{cos}t=\frac{\sqrt{3}}{2}$

$\mathrm{sin}t=-\frac{1}{2},\mathrm{cos}t=\frac{\sqrt{3}}{2}$

$\mathrm{sin}t=0.761,\mathrm{cos}t=-0.649$

$\mathrm{sin}t=1,\mathrm{cos}t=0$

## Technology

For the following exercises, use a graphing calculator to evaluate.

$\mathrm{sin}\text{\hspace{0.17em}}\frac{5\pi }{9}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{5\pi }{9}$

−0.1736

$\mathrm{sin}\text{\hspace{0.17em}}\frac{\pi }{10}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{\pi }{10}$

0.9511

$\mathrm{sin}\text{\hspace{0.17em}}\frac{3\pi }{4}$

$\mathrm{cos}\text{\hspace{0.17em}}\frac{3\pi }{4}$

−0.7071

$\mathrm{sin}\text{\hspace{0.17em}}98°$

$\mathrm{cos}\text{\hspace{0.17em}}98°$

−0.1392

$\mathrm{cos}\text{\hspace{0.17em}}310°$

$\mathrm{sin}\text{\hspace{0.17em}}310°$

−0.7660

## Extensions

For the following exercises, evaluate.

$\mathrm{sin}\left(\frac{11\pi }{3}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{-5\pi }{6}\right)$

$\mathrm{sin}\left(\frac{3\pi }{4}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{5\pi }{3}\right)$

$\frac{\sqrt{2}}{4}$

$\mathrm{sin}\left(-\frac{4\pi }{3}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{\pi }{2}\right)$

$\mathrm{sin}\left(\frac{-9\pi }{4}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{-\pi }{6}\right)$

$-\frac{\sqrt{6}}{4}$

$\mathrm{sin}\left(\frac{\pi }{6}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{-\pi }{3}\right)$

$\mathrm{sin}\left(\frac{7\pi }{4}\right)\mathrm{cos}\left(\frac{-2\pi }{3}\right)$

$\frac{\sqrt{2}}{4}$

$\mathrm{cos}\left(\frac{5\pi }{6}\right)\text{\hspace{0.17em}}\mathrm{cos}\left(\frac{2\pi }{3}\right)$

$\mathrm{cos}\left(\frac{-\pi }{3}\right)\mathrm{cos}\left(\frac{\pi }{4}\right)$

$\frac{\sqrt{2}}{4}$

$\mathrm{sin}\left(\frac{-5\pi }{4}\right)\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{11\pi }{6}\right)$

$\mathrm{sin}\left(\pi \right)\mathrm{sin}\left(\frac{\pi }{6}\right)$

0

## Real-world applications

For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around. The child enters at the point $\text{\hspace{0.17em}}\left(0,1\right),$ that is, on the due north position. Assume the carousel revolves counter clockwise.

What are the coordinates of the child after 45 seconds?

What are the coordinates of the child after 90 seconds?

$\left(0,–1\right)$

What are the coordinates of the child after 125 seconds?

When will the child have coordinates $\text{\hspace{0.17em}}\left(0.707,–0.707\right)\text{\hspace{0.17em}}$ if the ride lasts 6 minutes? (There are multiple answers.)

37.5 seconds, 97.5 seconds, 157.5 seconds, 217.5 seconds, 277.5 seconds, 337.5 seconds

When will the child have coordinates $\text{\hspace{0.17em}}\left(–0.866,–0.5\right)\text{\hspace{0.17em}}$ if the ride lasts 6 minutes?

root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as
how do I attempted a trig number as a starter
cos 18 ____ sin 72 evaluate