# 4.3 Fitting linear models to data  (Page 6/14)

 Page 6 / 14
$x$ $y$
4 44.8
5 43.1
6 38.8
7 39
8 38
9 32.7
10 30.1
11 29.3
12 27
13 25.8
 $x$ 21 25 30 31 40 50 $y$ 17 11 2 –1 –18 –40

$y=-\text{1}.\text{981}x+\text{6}0.\text{197;}$ $r=-0.\text{998}$

$x$ $y$
100 2000
80 1798
60 1589
55 1580
40 1390
20 1202
 $x$ 900 988 1000 1010 1200 1205 $y$ 70 80 82 84 105 108

$y=0.\text{121}x-38.841,r=0.998$

## Extensions

Graph $\text{\hspace{0.17em}}f\left(x\right)=0.5x+10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify that the function is a good fit for the data.

Graph $\text{\hspace{0.17em}}f\left(x\right)=-2x-10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify the function.

$\left(-2,-6\right),\left(1,\text{−12}\right),\left(5,-20\right),\left(6,\text{−22}\right),\left(9,\text{−28}\right);\text{\hspace{0.17em}}$ Yes, the function is a good fit.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{1},600\right),\left(\text{48},\text{1},\text{55}0\right),\left(50,\text{1},505\right),\left(\text{52},\text{1},\text{54}0\right),\left(\text{54},\text{1},\text{495}\right).$

Use linear regression to determine a function $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ where the profit in thousands of dollars depends on the number of units sold in hundreds.

Find to the nearest tenth and interpret the x -intercept.

$\left(\text{189}.8,0\right)\text{\hspace{0.17em}}$ If 18,980 units are sold, the company will have a profit of zero dollars.

Find to the nearest tenth and interpret the y -intercept.

## Real-world applications

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific recorded years:

$\left(\text{25}00,2000\right),\left(\text{265}0,2001\right),\left(3000,2003\right),\left(\text{35}00,2006\right),\left(\text{42}00,2010\right)$

Use linear regression to determine a function $\text{\hspace{0.17em}}y,$ where the year depends on the population. Round to three decimal places of accuracy.

$y=0.00587x+\text{1985}.4\text{1}$

Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{3}05\right),\left(50,\text{35}0\right),\left(\text{52},\text{39}0\right),\left(\text{54},\text{41}0\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=\text{2}0.\text{25}x-\text{671}.\text{5}$

Predict when the profit will exceed one million dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{225}\right),\left(50,\text{2}05\right),\left(\text{52},\text{18}0\right),\left(\text{54},\text{165}\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=-\text{1}0.\text{75}x+\text{742}.\text{5}0$

Predict when the profit will dip below the \$25,000 threshold.

## Linear Functions

Determine whether the algebraic equation is linear. $\text{\hspace{0.17em}}2x+3y=7$

Yes

Find the possible value of 8.5 using moivre's theorem
which of these functions is not uniformly cintinuous on (0, 1)? sinx
which of these functions is not uniformly continuous on 0,1
solve this equation by completing the square 3x-4x-7=0
X=7
Muustapha
=7
mantu
x=7
mantu
3x-4x-7=0 -x=7 x=-7
Kr
x=-7
mantu
9x-16x-49=0 -7x=49 -x=7 x=7
mantu
what's the formula
Modress
-x=7
Modress
new member
siame
what is trigonometry
deals with circles, angles, and triangles. Usually in the form of Soh cah toa or sine, cosine, and tangent
Thomas
solve for me this equational y=2-x
what are you solving for
Alex
solve x
Rubben
you would move everything to the other side leaving x by itself. subtract 2 and divide -1.
Nikki
then I got x=-2
Rubben
it will b -y+2=x
Alex
goodness. I'm sorry. I will let Alex take the wheel.
Nikki
ouky thanks braa
Rubben
I think he drive me safe
Rubben
how to get 8 trigonometric function of tanA=0.5, given SinA=5/13? Can you help me?m
More example of algebra and trigo
What is Indices
If one side only of a triangle is given is it possible to solve for the unkown two sides?
cool
Rubben
kya
Khushnama
please I need help in maths
Okey tell me, what's your problem is?
Navin
the least possible degree ?
(1+cosA)(1-cosA)=sin^2A
good
Neha
why I'm sending you solved question
Mirza
Teach me abt the echelon method
Khamis
exact value of cos(π/3-π/4)
What is differentiation?