<< Chapter < Page Chapter >> Page >
In this section you will:
  • Build linear models from verbal descriptions.
  • Model a set of data with a linear function.
A skyline view of Seattle with a focus on the Space Needle.
(credit: EEK Photography/Flickr)

Emily is a college student who plans to spend a summer in Seattle. She has saved $3,500 for her trip and anticipates spending $400 each week on rent, food, and activities. How can we write a linear model to represent her situation? What would be the x -intercept, and what can she learn from it? To answer these and related questions, we can create a model using a linear function. Models such as this one can be extremely useful for analyzing relationships and making predictions based on those relationships. In this section, we will explore examples of linear function models.

Building linear models from verbal descriptions

When building linear models to solve problems involving quantities with a constant rate of change, we typically follow the same problem strategies that we would use for any type of function. Let’s briefly review them:

  1. Identify changing quantities, and then define descriptive variables to represent those quantities. When appropriate, sketch a picture or define a coordinate system.
  2. Carefully read the problem to identify important information. Look for information that provides values for the variables or values for parts of the functional model, such as slope and initial value.
  3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.
  4. Identify a solution pathway from the provided information to what we are trying to find. Often this will involve checking and tracking units, building a table, or even finding a formula for the function being used to model the problem.
  5. When needed, write a formula for the function.
  6. Solve or evaluate the function using the formula.
  7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.
  8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

Now let’s take a look at the student in Seattle. In her situation, there are two changing quantities: time and money. The amount of money she has remaining while on vacation depends on how long she stays. We can use this information to define our variables, including units.

Output: M , money remaining, in dollars Input: t , time, in weeks

So, the amount of money remaining depends on the number of weeks: M ( t ) .

We can also identify the initial value and the rate of change .              Initial Value: She saved $3,500, so $3,500 is the initial value for M .              Rate of Change: She anticipates spending $400 each week, so $400 per week is the rate of change, or slope .

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also, because the slope is negative, the linear function is decreasing. This should make sense because she is spending money each week.

The rate of change    is constant, so we can start with the linear model M ( t ) = m t + b . Then we can substitute the intercept and slope provided.

Questions & Answers

what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask