# 5.3 Graphs of polynomial functions  (Page 8/13)

 Page 8 / 13

Access the following online resource for additional instruction and practice with graphing polynomial functions.

## Key concepts

• Polynomial functions of degree 2 or more are smooth, continuous functions. See [link] .
• To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero. See [link] , [link] , and [link] .
• Another way to find the $\text{\hspace{0.17em}}x\text{-}$ intercepts of a polynomial function is to graph the function and identify the points at which the graph crosses the $\text{\hspace{0.17em}}x\text{-}$ axis. See [link] .
• The multiplicity of a zero determines how the graph behaves at the $\text{\hspace{0.17em}}x\text{-}$ intercepts. See [link] .
• The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
• The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
• The end behavior of a polynomial function depends on the leading term.
• The graph of a polynomial function changes direction at its turning points.
• A polynomial function of degree $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ has at most $\text{\hspace{0.17em}}n-1\text{\hspace{0.17em}}$ turning points. See [link] .
• To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that the final graph has at most $\text{\hspace{0.17em}}n-1\text{\hspace{0.17em}}$ turning points. See [link] and [link] .
• Graphing a polynomial function helps to estimate local and global extremas. See [link] .
• The Intermediate Value Theorem tells us that if have opposite signs, then there exists at least one value $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ between $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ for which $\text{\hspace{0.17em}}f\left(c\right)=0.\text{\hspace{0.17em}}$ See [link] .

## Verbal

What is the difference between an $\text{\hspace{0.17em}}x\text{-}$ intercept and a zero of a polynomial function $\text{\hspace{0.17em}}f?\text{\hspace{0.17em}}$

The $\text{\hspace{0.17em}}x\text{-}$ intercept is where the graph of the function crosses the $\text{\hspace{0.17em}}x\text{-}$ axis, and the zero of the function is the input value for which $\text{\hspace{0.17em}}f\left(x\right)=0.$

If a polynomial function of degree $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ has $\text{\hspace{0.17em}}n\text{\hspace{0.17em}}$ distinct zeros, what do you know about the graph of the function?

Explain how the Intermediate Value Theorem can assist us in finding a zero of a function.

If we evaluate the function at $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and at $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ and the sign of the function value changes, then we know a zero exists between $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b.$

Explain how the factored form of the polynomial helps us in graphing it.

If the graph of a polynomial just touches the x -axis and then changes direction, what can we conclude about the factored form of the polynomial?

There will be a factor raised to an even power.

## Algebraic

For the following exercises, find the $\text{\hspace{0.17em}}x\text{-}$ or t -intercepts of the polynomial functions.

$\text{\hspace{0.17em}}C\left(t\right)=2\left(t-4\right)\left(t+1\right)\left(t-6\right)$

$\text{\hspace{0.17em}}C\left(t\right)=3\left(t+2\right)\left(t-3\right)\left(t+5\right)$

$\left(-2,0\right),\left(3,0\right),\left(-5,0\right)$

$\text{\hspace{0.17em}}C\left(t\right)=4t{\left(t-2\right)}^{2}\left(t+1\right)$

$\text{\hspace{0.17em}}C\left(t\right)=2t\left(t-3\right){\left(t+1\right)}^{2}$

$\text{\hspace{0.17em}}\left(3,0\right),\left(-1,0\right),\left(0,0\right)$

$\text{\hspace{0.17em}}C\left(t\right)=2{t}^{4}-8{t}^{3}+6{t}^{2}$

$\text{\hspace{0.17em}}C\left(t\right)=4{t}^{4}+12{t}^{3}-40{t}^{2}$

$\text{\hspace{0.17em}}f\left(x\right)={x}^{4}-{x}^{2}$

$\text{\hspace{0.17em}}f\left(x\right)={x}^{3}+{x}^{2}-20x$

$f\left(x\right)={x}^{3}+6{x}^{2}-7x$

$f\left(x\right)={x}^{3}+{x}^{2}-4x-4$

$f\left(x\right)={x}^{3}+2{x}^{2}-9x-18$

$f\left(x\right)=2{x}^{3}-{x}^{2}-8x+4$

$\left(-2,0\right),\text{\hspace{0.17em}}\left(2,0\right),\text{\hspace{0.17em}}\left(\frac{1}{2},0\right)$

$f\left(x\right)={x}^{6}-7{x}^{3}-8$

$f\left(x\right)=2{x}^{4}+6{x}^{2}-8$

$f\left(x\right)={x}^{3}-3{x}^{2}-x+3$

$f\left(x\right)={x}^{6}-2{x}^{4}-3{x}^{2}$

$\left(0,0\right),\text{\hspace{0.17em}}\left(\sqrt{3},0\right),\text{\hspace{0.17em}}\left(-\sqrt{3},0\right)$

$f\left(x\right)={x}^{6}-3{x}^{4}-4{x}^{2}$

$f\left(x\right)={x}^{5}-5{x}^{3}+4x$

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one zero within the given interval.

$f\left(x\right)={x}^{3}-9x,\text{\hspace{0.17em}}$ between $\text{\hspace{0.17em}}x=-4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=-2.$

$f\left(x\right)={x}^{3}-9x,\text{\hspace{0.17em}}$ between $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=4.$

$f\left(2\right)=–10\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}f\left(4\right)=28.$ Sign change confirms.

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has