# 5.3 Graphs of polynomial functions

 Page 1 / 13
In this section, you will:
• Recognize characteristics of graphs of polynomial functions.
• Use factoring to ﬁnd zeros of polynomial functions.
• Identify zeros and their multiplicities.
• Determine end behavior.
• Understand the relationship between degree and turning points.
• Graph polynomial functions.
• Use the Intermediate Value Theorem.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in [link] .

 Year 2006 2007 2008 2009 2010 2011 2012 2013 Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

The revenue can be modeled by the polynomial function

$R\left(t\right)=-0.037{t}^{4}+1.414{t}^{3}-19.777{t}^{2}+118.696t-205.332$

where $\text{\hspace{0.17em}}R\text{\hspace{0.17em}}$ represents the revenue in millions of dollars and $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ represents the year, with $\text{\hspace{0.17em}}t=6\text{\hspace{0.17em}}$ corresponding to 2006. Over which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we will explore the local behavior of polynomials in general.

## Recognizing characteristics of graphs of polynomial functions

Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are called continuous. [link] shows a graph that represents a polynomial function    and a graph that represents a function that is not a polynomial.

## Recognizing polynomial functions

Which of the graphs in [link] represents a polynomial function?

The graphs of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ are graphs of polynomial functions. They are smooth and continuous .

The graphs of $\text{\hspace{0.17em}}g\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ are graphs of functions that are not polynomials. The graph of function $\text{\hspace{0.17em}}g\text{\hspace{0.17em}}$ has a sharp corner. The graph of function $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is not continuous.

Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

## Using factoring to find zeros of polynomial functions

Recall that if $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ is a polynomial function, the values of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ for which $\text{\hspace{0.17em}}f\left(x\right)=0\text{\hspace{0.17em}}$ are called zeros    of $\text{\hspace{0.17em}}f.\text{\hspace{0.17em}}$ If the equation of the polynomial function can be factored, we can set each factor equal to zero and solve for the zeros .

We can use this method to find $\text{\hspace{0.17em}}x\text{-}$ intercepts because at the $\text{\hspace{0.17em}}x\text{-}$ intercepts we find the input values when the output value is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves to three cases:

1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
2. The polynomial is given in factored form.
3. Technology is used to determine the intercepts.

Given a polynomial function $\text{\hspace{0.17em}}f,\text{\hspace{0.17em}}$ find the x -intercepts by factoring.

1. Set $\text{\hspace{0.17em}}f\left(x\right)=0.\text{\hspace{0.17em}}$
2. If the polynomial function is not given in factored form:
1. Factor out any common monomial factors.
2. Factor any factorable binomials or trinomials.
3. Set each factor equal to zero and solve to find the $\text{\hspace{0.17em}}x\text{-}$ intercepts.

#### Questions & Answers

what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By