<< Chapter < Page Chapter >> Page >

Solve the inequality and write the answer in interval notation: 5 6 x 3 4 + 8 3 x .

[ 3 14 , )

Got questions? Get instant answers now!

Understanding compound inequalities

A compound inequality    includes two inequalities in one statement. A statement such as 4 < x 6 means 4 < x and x 6. There are two ways to solve compound inequalities: separating them into two separate inequalities or leaving the compound inequality intact and performing operations on all three parts at the same time. We will illustrate both methods.

Solving a compound inequality

Solve the compound inequality: 3 2 x + 2 < 6.

The first method is to write two separate inequalities: 3 2 x + 2 and 2 x + 2 < 6. We solve them independently.

3 2 x + 2 and 2 x + 2 < 6 1 2 x 2 x < 4 1 2 x x < 2

Then, we can rewrite the solution as a compound inequality, the same way the problem began.

1 2 x < 2

In interval notation, the solution is written as [ 1 2 , 2 ) .

The second method is to leave the compound inequality intact, and perform solving procedures on the three parts at the same time.

3 2 x + 2 < 6 1 2 x < 4 Isolate the variable term, and subtract 2 from all three parts . 1 2 x < 2 Divide through all three parts by 2 .

We get the same solution: [ 1 2 , 2 ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the compound inequality: 4 < 2 x 8 10.

6 < x 9 or ( 6 , 9 ]

Got questions? Get instant answers now!

Solving a compound inequality with the variable in all three parts

Solve the compound inequality with variables in all three parts: 3 + x > 7 x 2 > 5 x 10.

Let's try the first method. Write two inequalities :

3 + x > 7 x 2 and 7 x 2 > 5 x 10 3 > 6 x 2 2 x 2 > −10 5 > 6 x 2 x > −8 5 6 > x x > −4 x < 5 6 −4 < x

The solution set is −4 < x < 5 6 or in interval notation ( −4 , 5 6 ) . Notice that when we write the solution in interval notation, the smaller number comes first. We read intervals from left to right, as they appear on a number line. See [link] .

A number line with the points -4 and 5/6 labeled.  Dots appear at these points and a line connects these two dots.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the compound inequality: 3 y < 4 5 y < 5 + 3 y .

( 1 8 , 1 2 )

Got questions? Get instant answers now!

Solving absolute value inequalities

As we know, the absolute value of a quantity is a positive number or zero. From the origin, a point located at ( x , 0 ) has an absolute value of x , as it is x units away. Consider absolute value as the distance from one point to another point. Regardless of direction, positive or negative, the distance between the two points is represented as a positive number or zero.

An absolute value inequality is an equation of the form

| A | < B , | A | B , | A | > B , or  | A | B ,

Where A , and sometimes B , represents an algebraic expression dependent on a variable x. Solving the inequality means finding the set of all x - values that satisfy the problem. Usually this set will be an interval or the union of two intervals and will include a range of values.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the graphical approach is we can read the solution by interpreting the graphs of two equations. The advantage of the algebraic approach is that solutions are exact, as precise solutions are sometimes difficult to read from a graph.

Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200 of $600. We can solve algebraically for the set of x- values such that the distance between x and 600 is less than 200. We represent the distance between x and 600 as | x 600 | , and therefore, | x 600 | 200 or

Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask