# 2.7 Linear inequalities and absolute value inequalities  (Page 5/11)

 Page 5 / 11

## Verbal

When solving an inequality, explain what happened from Step 1 to Step 2:

When we divide both sides by a negative it changes the sign of both sides so the sense of the inequality sign changes.

When solving an inequality, we arrive at:

$\begin{array}{l}x+2

Explain what our solution set is.

When writing our solution in interval notation, how do we represent all the real numbers?

$\left(-\infty ,\infty \right)$

When solving an inequality, we arrive at:

$\begin{array}{l}x+2>x+3\hfill \\ \phantom{\rule{1.2em}{0ex}}2>3\hfill \end{array}$

Explain what our solution set is.

Describe how to graph $\text{\hspace{0.17em}}y=|x-3|$

We start by finding the x -intercept, or where the function = 0. Once we have that point, which is $\text{\hspace{0.17em}}\left(3,0\right),$ we graph to the right the straight line graph $\text{\hspace{0.17em}}y=x-3,$ and then when we draw it to the left we plot positive y values, taking the absolute value of them.

## Algebraic

For the following exercises, solve the inequality. Write your final answer in interval notation.

$4x-7\le 9$

$3x+2\ge 7x-1$

$\left(-\infty ,\frac{3}{4}\right]$

$-2x+3>x-5$

$4\left(x+3\right)\ge 2x-1$

$\left[\frac{-13}{2},\infty \right)$

$-\frac{1}{2}x\le \frac{-5}{4}+\frac{2}{5}x$

$-5\left(x-1\right)+3>3x-4-4x$

$\left(-\infty ,3\right)$

$-3\left(2x+1\right)>-2\left(x+4\right)$

$\frac{x+3}{8}-\frac{x+5}{5}\ge \frac{3}{10}$

$\left(-\infty ,-\frac{37}{3}\right]$

$\frac{x-1}{3}+\frac{x+2}{5}\le \frac{3}{5}$

For the following exercises, solve the inequality involving absolute value. Write your final answer in interval notation.

$|x+9|\ge -6$

All real numbers $\text{\hspace{0.17em}}\left(-\infty ,\infty \right)$

$|2x+3|<7$

$|3x-1|>11$

$\left(-\infty ,\frac{-10}{3}\right)\cup \left(4,\infty \right)$

$|2x+1|+1\le 6$

$|x-2|+4\ge 10$

$\left(-\infty ,-4\right]\cup \left[8,+\infty \right)$

$|-2x+7|\le 13$

$|x-7|<-4$

No solution

$|x-20|>-1$

$|\frac{x-3}{4}|<2$

$\left(-5,11\right)$

For the following exercises, describe all the x -values within or including a distance of the given values.

Distance of 5 units from the number 7

Distance of 3 units from the number 9

$\left[6,12\right]$

Distance of10 units from the number 4

Distance of 11 units from the number 1

$\left[-10,12\right]$

$-4<3x+2\le 18$

$3x+1>2x-5>x-7$

$3y<5-2y<7+y$

$x+7

## Graphical

For the following exercises, graph the function. Observe the points of intersection and shade the x -axis representing the solution set to the inequality. Show your graph and write your final answer in interval notation.

$|x-1|>2$

$\left(-\infty ,-1\right)\cup \left(3,\infty \right)$

$|x+3|\ge 5$

$|x+7|\le 4$

$\left[-11,-3\right]$

$|x-2|<7$

$|x-2|<0$

It is never less than zero. No solution.

For the following exercises, graph both straight lines (left-hand side being y1 and right-hand side being y2) on the same axes. Find the point of intersection and solve the inequality by observing where it is true comparing the y -values of the lines.

$x+3<3x-4$

$x-2>2x+1$

Where the blue line is above the orange line; point of intersection is $\text{\hspace{0.17em}}x=-3.$

$\left(-\infty ,-3\right)$

$x+1>x+4$

$\frac{1}{2}x+1>\frac{1}{2}x-5$

Where the blue line is above the orange line; always. All real numbers.

$\left(-\infty ,-\infty \right)$

$4x+1<\frac{1}{2}x+3$

## Numeric

For the following exercises, write the set in interval notation.

$\left\{x|-1

$\left(-1,3\right)$

$\left\{x|x\ge 7\right\}$

$\left\{x|x<4\right\}$

$\left(-\infty ,4\right)$

For the following exercises, write the interval in set-builder notation.

$\left(-\infty ,6\right)$

$\left\{x|x<6\right\}$

$\left(4,+\infty \right)$

$\left[-3,5\right)$

$\left\{x|-3\le x<5\right\}$

$\left[-4,1\right]\cup \left[9,\infty \right)$

For the following exercises, write the set of numbers represented on the number line in interval notation.

How look for the general solution of a trig function
stock therom F=(x2+y2) i-2xy J jaha x=a y=o y=b
root under 3-root under 2 by 5 y square
The sum of the first n terms of a certain series is 2^n-1, Show that , this series is Geometric and Find the formula of the n^th
cosA\1+sinA=secA-tanA
why two x + seven is equal to nineteen.
The numbers cannot be combined with the x
Othman
2x + 7 =19
humberto
2x +7=19. 2x=19 - 7 2x=12 x=6
Yvonne
because x is 6
SAIDI
what is the best practice that will address the issue on this topic? anyone who can help me. i'm working on my action research.
simplify each radical by removing as many factors as possible (a) √75
how is infinity bidder from undefined?
what is the value of x in 4x-2+3
give the complete question
Shanky
4x=3-2 4x=1 x=1+4 x=5 5x
Olaiya
hi can you give another equation I'd like to solve it
Daniel
what is the value of x in 4x-2+3
Olaiya
if 4x-2+3 = 0 then 4x = 2-3 4x = -1 x = -(1÷4) is the answer.
Jacob
4x-2+3 4x=-3+2 4×=-1 4×/4=-1/4
LUTHO
then x=-1/4
LUTHO
4x-2+3 4x=-3+2 4x=-1 4x÷4=-1÷4 x=-1÷4
LUTHO
A research student is working with a culture of bacteria that doubles in size every twenty minutes. The initial population count was  1350  bacteria. Rounding to five significant digits, write an exponential equation representing this situation. To the nearest whole number, what is the population size after  3  hours?
v=lbh calculate the volume if i.l=5cm, b=2cm ,h=3cm
Need help with math
Peya
can you help me on this topic of Geometry if l help you
litshani
( cosec Q _ cot Q ) whole spuare = 1_cosQ / 1+cosQ
A guy wire for a suspension bridge runs from the ground diagonally to the top of the closest pylon to make a triangle. We can use the Pythagorean Theorem to find the length of guy wire needed. The square of the distance between the wire on the ground and the pylon on the ground is 90,000 feet. The square of the height of the pylon is 160,000 feet. So, the length of the guy wire can be found by evaluating √(90000+160000). What is the length of the guy wire?
the indicated sum of a sequence is known as