<< Chapter < Page Chapter >> Page >

Given a rational expression with repeated linear factors, decompose it.

  1. Use a variable like A , B , or C for the numerators and account for increasing powers of the denominators.
    P ( x ) Q ( x ) = A 1 ( a x + b ) + A 2 ( a x + b ) 2 +   . +  A n ( a x + b ) n
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Decomposing with repeated linear factors

Decompose the given rational expression with repeated linear factors.

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x

The denominator factors are x ( x −2 ) 2 . To allow for the repeated factor of ( x −2 ) , the decomposition will include three denominators: x , ( x −2 ) , and ( x −2 ) 2 . Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = A x + B ( x −2 ) + C ( x −2 ) 2

Next, we multiply both sides by the common denominator.

x ( x −2 ) 2 [ x 2 + 2 x + 4 x ( x −2 ) 2 ] = [ A x + B ( x −2 ) + C ( x −2 ) 2 ] x ( x −2 ) 2                  x 2 + 2 x + 4 = A ( x −2 ) 2 + B x ( x −2 ) + C x

On the right side of the equation, we expand and collect like terms.

x 2 + 2 x + 4 = A ( x 2 4 x + 4 ) + B ( x 2 2 x ) + C x                        = A x 2 4 A x + 4 A + B x 2 2 B x + C x                        = ( A + B ) x 2 + ( 4 A 2 B + C ) x + 4 A

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

x 2 + 2 x + 4 = ( A + B ) x 2 + ( −4 A −2 B + C ) x + 4 A
A + B = −1 (1) −4 A −2 B + C = 2 (2) 4 A = 4 (3)

Solving for A , we have

4 A = 4    A = 1

Substitute A = 1 into equation (1).

   A + B = −1 ( 1 ) + B = −1           B = −2

Then, to solve for C , substitute the values for A and B into equation (2).

       −4 A −2 B + C = 2 −4 ( 1 ) −2 ( −2 ) + C = 2              −4 + 4 + C = 2                             C = 2

Thus,

x 2 + 2 x + 4 x 3 −4 x 2 + 4 x = 1 x 2 ( x −2 ) + 2 ( x −2 ) 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the partial fraction decomposition of the expression with repeated linear factors.

6 x −11 ( x −1 ) 2

6 x −1 5 ( x −1 ) 2

Got questions? Get instant answers now!

Decomposing P ( x ) Q ( x ) , Where Q(x) Has a nonrepeated irreducible quadratic factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the denominator, and we applied numerators A , B , or C representing constants. Now we will look at an example where one of the factors in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible quadratic factor. In cases like this, we use a linear numerator such as A x + B , B x + C , etc.

Decomposition of P ( x ) Q ( x ) : Q ( x ) Has a nonrepeated irreducible quadratic factor

The partial fraction decomposition of P ( x ) Q ( x ) such that Q ( x ) has a nonrepeated irreducible quadratic factor and the degree of P ( x ) is less than the degree of Q ( x ) is written as

P ( x ) Q ( x ) = A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a different constant numerator: A , B , C , and so on.

Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors, decompose it.

  1. Use variables such as A , B , or C for the constant numerators over linear factors, and linear expressions such as A 1 x + B 1 , A 2 x + B 2 , etc., for the numerators of each quadratic factor in the denominator.
    P ( x ) Q ( x ) = A a x + b + A 1 x + B 1 ( a 1 x 2 + b 1 x + c 1 ) + A 2 x + B 2 ( a 2 x 2 + b 2 x + c 2 ) + + A n x + B n ( a n x 2 + b n x + c n )
  2. Multiply both sides of the equation by the common denominator to eliminate fractions.
  3. Expand the right side of the equation and collect like terms.
  4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of equations to solve for the numerators.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask