<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has only nonrepeated linear factors.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has repeated linear factors.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has a nonrepeated irreducible quadratic factor.
  • Decompose   P( x )/Q( x ) ,  where  Q( x )  has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the decomposition of rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in this section will help simplify the concept of a rational expression.

Decomposing P ( x ) Q ( x ) Where Q(x) Has only nonrepeated linear factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a common denominator so that we can write the sum or difference as a single, simplified rational expression. In this section, we will look at partial fraction decomposition    , which is the undoing of the procedure to add or subtract rational expressions. In other words, it is a return from the single simplified rational expression    to the original expressions, called the partial fractions    .

For example, suppose we add the following fractions:

2 x −3 + −1 x + 2

We would first need to find a common denominator, ( x + 2 ) ( x −3 ) .

Next, we would write each expression with this common denominator and find the sum of the terms.

2 x 3 ( x + 2 x + 2 ) + 1 x + 2 ( x 3 x 3 ) =                        2 x + 4 x + 3 ( x + 2 ) ( x 3 ) = x + 7 x 2 x 6

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite (decompose) it as the sum of two fractions.

x + 7 x 2 x −6 Simplified sum = 2 x −3 + −1 x + 2 Partial fraction decomposition

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree of the numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing, the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words, using the example above, the factors of x 2 x −6 are ( x −3 ) ( x + 2 ) , the denominators of the decomposed rational expression. So we will rewrite the simplified form as the sum of individual fractions and use a variable for each numerator. Then, we will solve for each numerator using one of several methods available for partial fraction decomposition.

Partial fraction decomposition of P ( x ) Q ( x ) : Q ( x ) Has nonrepeated linear factors

The partial fraction decomposition    of P ( x ) Q ( x ) when Q ( x ) has nonrepeated linear factors and the degree of P ( x ) is less than the degree of Q ( x ) is

P ( x ) Q ( x ) = A 1 ( a 1 x + b 1 ) + A 2 ( a 2 x + b 2 ) + A 3 ( a 3 x + b 3 ) + + A n ( a n x + b n ) .

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Please prove it
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
the 28th term is 175
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?