# 11.4 Partial fractions

 Page 1 / 7
In this section, you will:
• Decompose   P( x )/Q( x ) ,  where  Q( x )  has only nonrepeated linear factors.
• Decompose   P( x )/Q( x ) ,  where  Q( x )  has repeated linear factors.
• Decompose   P( x )/Q( x ) ,  where  Q( x )  has a nonrepeated irreducible quadratic factor.
• Decompose   P( x )/Q( x ) ,  where  Q( x )  has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the decomposition of rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in this section will help simplify the concept of a rational expression.

## Decomposing $\text{\hspace{0.17em}}\frac{P\left(x\right)}{Q\left(x\right)}\text{\hspace{0.17em}}$ Where Q(x) Has only nonrepeated linear factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a common denominator so that we can write the sum or difference as a single, simplified rational expression. In this section, we will look at partial fraction decomposition    , which is the undoing of the procedure to add or subtract rational expressions. In other words, it is a return from the single simplified rational expression    to the original expressions, called the partial fractions    .

For example, suppose we add the following fractions:

$\frac{2}{x-3}+\frac{-1}{x+2}$

We would first need to find a common denominator, $\text{\hspace{0.17em}}\left(x+2\right)\left(x-3\right).$

Next, we would write each expression with this common denominator and find the sum of the terms.

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite (decompose) it as the sum of two fractions.

$\underset{\begin{array}{l}\\ \text{Simplified}\text{\hspace{0.17em}}\text{sum}\end{array}}{\frac{x+7}{{x}^{2}-x-6}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\underset{\begin{array}{l}\\ \text{Partial}\text{\hspace{0.17em}}\text{fraction}\text{\hspace{0.17em}}\text{decomposition}\end{array}}{\frac{2}{x-3}+\frac{-1}{x+2}}$

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree of the numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing, the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words, using the example above, the factors of $\text{\hspace{0.17em}}{x}^{2}-x-6\text{\hspace{0.17em}}$ are $\text{\hspace{0.17em}}\left(x-3\right)\left(x+2\right),\text{\hspace{0.17em}}$ the denominators of the decomposed rational expression. So we will rewrite the simplified form as the sum of individual fractions and use a variable for each numerator. Then, we will solve for each numerator using one of several methods available for partial fraction decomposition.

## Partial fraction decomposition of $\text{\hspace{0.17em}}\frac{P\left(x\right)}{Q\left(x\right)}:Q\left(x\right)\text{\hspace{0.17em}}$ Has nonrepeated linear factors

The partial fraction decomposition    of $\text{\hspace{0.17em}}\frac{P\left(x\right)}{Q\left(x\right)}\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}Q\left(x\right)\text{\hspace{0.17em}}$ has nonrepeated linear factors and the degree of $\text{\hspace{0.17em}}P\left(x\right)\text{\hspace{0.17em}}$ is less than the degree of $\text{\hspace{0.17em}}Q\left(x\right)\text{\hspace{0.17em}}$ is

$\frac{P\left(x\right)}{Q\left(x\right)}=\frac{{A}_{1}}{\left({a}_{1}x+{b}_{1}\right)}+\frac{{A}_{2}}{\left({a}_{2}x+{b}_{2}\right)}+\frac{{A}_{3}}{\left({a}_{3}x+{b}_{3}\right)}+\cdot \cdot \cdot +\frac{{A}_{n}}{\left({a}_{n}x+{b}_{n}\right)}.$

#### Questions & Answers

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has