<< Chapter < Page Chapter >> Page >

An ordinary pulley has an MA of 1; it only changes the direction of the force and not its magnitude. Combinations of pulleys, such as those illustrated in [link] , are used to multiply force. If the pulleys are friction-free, then the force output is approximately an integral multiple of the tension in the cable. The number of cables pulling directly upward on the system of interest, as illustrated in the figures given below, is approximately the MA of the pulley system. Since each attachment applies an external force in approximately the same direction as the others, they add, producing a total force that is nearly an integral multiple of the input force T .

In figure a, a rope over two pulleys is shown. One pulley is fixed at the roof and the other is hanging through the rope. A weight is hanging from the second pulley. The tensions T are shown at the two parts of hanging pulley and at the free end of the rope. The mechanical advantage of the system is two. In figure b, a set of three pulleys is shown. A pulley is fixed at the roof with another pulley below it. The third pulley is hanging through the rope with a weight hanging at it. The tensions on the rope are shown as vectors on the rope and at the end of the rope. In figure c, set of three pulleys is shown. One of the pulleys is fixed at the roof. Two connected pulleys are hanging through a rope over the first pulley. The directions of the tensions are marked on the ropes and at the end of the rope.
(a) The combination of pulleys is used to multiply force. The force is an integral multiple of tension if the pulleys are frictionless. This pulley system has two cables attached to its load, thus applying a force of approximately 2 T . This machine has MA 2 size 12{ ital "MA" approx 2} {} . (b) Three pulleys are used to lift a load in such a way that the mechanical advantage is about 3. Effectively, there are three cables attached to the load. (c) This pulley system applies a force of 4 T , so that it has MA 4 size 12{ ital "MA" approx 4} {} . Effectively, four cables are pulling on the system of interest.

Section summary

  • Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance through which we have to apply the force.
  • The ratio of output to input forces for any simple machine is called its mechanical advantage
  • A few simple machines are the lever, nail puller, wheelbarrow, crank, etc.

Conceptual questions

Scissors are like a double-lever system. Which of the simple machines in [link] and [link] is most analogous to scissors?

Got questions? Get instant answers now!

Suppose you pull a nail at a constant rate using a nail puller as shown in [link] . Is the nail puller in equilibrium? What if you pull the nail with some acceleration – is the nail puller in equilibrium then? In which case is the force applied to the nail puller larger and why?

Got questions? Get instant answers now!

Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by muscles inside the body?

Got questions? Get instant answers now!

Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces (see previous Question)?

Got questions? Get instant answers now!

Problems&Exercises

What is the mechanical advantage of a nail puller—similar to the one shown in [link] —where you exert a force 45 cm size 12{"45"`"cm"} {} from the pivot and the nail is 1.8 cm size 12{1 "." 8`"cm"} {} on the other side? What minimum force must you exert to apply a force of 1250 N size 12{"1250"`N} {} to the nail?

25

50 N

Got questions? Get instant answers now!

Suppose you needed to raise a 250-kg mower a distance of 6.0 cm above the ground to change a tire. If you had a 2.0-m long lever, where would you place the fulcrum if your force was limited to 300 N?

Got questions? Get instant answers now!

a) What is the mechanical advantage of a wheelbarrow, such as the one in [link] , if the center of gravity of the wheelbarrow and its load has a perpendicular lever arm of 5.50 cm, while the hands have a perpendicular lever arm of 1.02 m? (b) What upward force should you exert to support the wheelbarrow and its load if their combined mass is 55.0 kg? (c) What force does the wheel exert on the ground?

a) MA = 18 . 5 size 12{"MA"="18" "." 5} {}

b) F i = 29.1 N size 12{F rSub { size 8{i} } ="29" "." 1`N} {}

c) 510 N downward

Got questions? Get instant answers now!

A typical car has an axle with 1 . 10 cm size 12{1 "." "10"`"cm"} {} radius driving a tire with a radius of 27 .5 cm size 12{"27" "." 5`"cm"} {} . What is its mechanical advantage assuming the very simplified model in [link] (b)?

Got questions? Get instant answers now!

What force does the nail puller in [link] exert on the supporting surface? The nail puller has a mass of 2.10 kg.

1 . 3 × 10 3 N size 12{1 "." "30" times "10" rSup { size 8{3} } `N} {}

Got questions? Get instant answers now!

If you used an ideal pulley of the type shown in [link] (a) to support a car engine of mass 115 kg size 12{"115"`"kg"} {} , (a) What would be the tension in the rope? (b) What force must the ceiling supply, assuming you pull straight down on the rope? Neglect the pulley system’s mass.

Got questions? Get instant answers now!

Repeat [link] for the pulley shown in [link] (c), assuming you pull straight up on the rope. The pulley system’s mass is 7.00 kg size 12{7 "." "00"`"kg"} {} .

a) T = 299 N size 12{T="299"`N} {}

b) 897 N upward

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask