# 9.5 Simple machines

 Page 1 / 4
• Describe different simple machines.
• Calculate the mechanical advantage.

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance through which we apply the force. The word for “machine” comes from the Greek word meaning “to help make things easier.” Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still conserved for these devices because a machine cannot do more work than the energy put into it. However, machines can reduce the input force that is needed to perform the job. The ratio of output to input force magnitudes for any simple machine is called its mechanical advantage    (MA).

$\text{MA}=\frac{{F}_{\text{o}}}{{F}_{\text{i}}}$

One of the simplest machines is the lever, which is a rigid bar pivoted at a fixed place called the fulcrum. Torques are involved in levers, since there is rotation about a pivot point. Distances from the physical pivot of the lever are crucial, and we can obtain a useful expression for the MA in terms of these distances. A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid arrows. The force that the nail puller applies to the nail ( F o size 12{F rSub { size 8{o} } } {} ) is not a force on the nail puller. The reaction force the nail exerts back on the puller ( F n size 12{F rSub { size 8{n} } } {} ) is an external force and is equal and opposite to F o size 12{F rSub { size 8{o} } } {} . The perpendicular lever arms of the input and output forces are l i size 12{l rSub { size 8{i} } } {} and l 0 size 12{l rSub { size 8{0} } } {} .

[link] shows a lever type that is used as a nail puller. Crowbars, seesaws, and other such levers are all analogous to this one. ${\mathbf{\text{F}}}_{\text{i}}$ is the input force and ${\mathbf{\text{F}}}_{\text{o}}$ is the output force. There are three vertical forces acting on the nail puller (the system of interest) – these are ${\mathbf{\text{F}}}_{\text{i}},\phantom{\rule{0.25em}{0ex}}{\mathbf{\text{F}}}_{\text{o}},$ and $\mathbf{\text{N}}$ . ${\mathbf{\text{F}}}_{\text{n}}$ is the reaction force back on the system, equal and opposite to ${\mathbf{\text{F}}}_{\text{o}}$ . (Note that ${\mathbf{\text{F}}}_{\text{o}}$ is not a force on the system.) $\mathbf{\text{N}}$ is the normal force upon the lever, and its torque is zero since it is exerted at the pivot. The torques due to ${\mathbf{\text{F}}}_{\text{i}}$ and ${\mathbf{\text{F}}}_{\text{n}}$ must be equal to each other if the nail is not moving, to satisfy the second condition for equilibrium $\left(\text{net}\phantom{\rule{0.25em}{0ex}}\tau =0\right)$ . (In order for the nail to actually move, the torque due to ${\mathbf{\text{F}}}_{\text{i}}$ must be ever-so-slightly greater than torque due to ${\mathbf{\text{F}}}_{\text{n}}$ .) Hence,

${l}_{\text{i}}{F}_{\text{i}}={l}_{\text{o}}{F}_{\text{o}}$

where ${l}_{\text{i}}$ and ${l}_{\text{o}}$ are the distances from where the input and output forces are applied to the pivot, as shown in the figure. Rearranging the last equation gives

$\frac{{F}_{\text{o}}}{{F}_{\text{i}}}=\frac{{l}_{\text{i}}}{{l}_{\text{o}}}.$

What interests us most here is that the magnitude of the force exerted by the nail puller, ${F}_{\text{o}}$ , is much greater than the magnitude of the input force applied to the puller at the other end, ${F}_{\text{i}}$ . For the nail puller,

$\text{MA}=\frac{{F}_{\text{o}}}{{F}_{\text{i}}}=\frac{{l}_{\text{i}}}{{l}_{\text{o}}}\text{.}$

This equation is true for levers in general. For the nail puller, the MA is certainly greater than one. The longer the handle on the nail puller, the greater the force you can exert with it.

Two other types of levers that differ slightly from the nail puller are a wheelbarrow and a shovel, shown in [link] . All these lever types are similar in that only three forces are involved – the input force, the output force, and the force on the pivot – and thus their MAs are given by $\text{MA}=\frac{{F}_{\text{o}}}{{F}_{\text{i}}}$ and $\text{MA}=\frac{{d}_{1}}{{d}_{2}}$ , with distances being measured relative to the physical pivot. The wheelbarrow and shovel differ from the nail puller because both the input and output forces are on the same side of the pivot.

#### Questions & Answers

Physics is a physical science that deals with the study of matter in relation to energy
Divine Reply
what is physics
Rhema Reply
physics is a physical science that deals with the study of matter in relation to energy
Osayuwa
a15kg powerexerted by the foresafter 3second
Firdos Reply
what is displacement
Xolani Reply
movement in a direction
Jason
hello
Hosea
Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
anas Reply
Hi
saeid
hi
Yimam
What is thê principle behind movement of thê taps control
Oluwakayode Reply
while
Hosea
what is atomic mass
thomas Reply
this is the mass of an atom of an element in ratio with the mass of carbon-atom
Chukwuka
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Jesuovie Reply
Explain why it is difficult to have an ideal machine in real life situations.
Isaac Reply
tell me
Promise
what's the s . i unit for couple?
Promise
its s.i unit is Nm
Covenant
Force×perpendicular distance N×m=Nm
Oluwakayode
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
Oluwakayode
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)
Zaharadeen Reply
can i get all formulas of physics
BPH Reply
yes
haider
just broswe
Osayuwa
just browse
Osayuwa
what affects fluid
Doreen Reply
pressure
Oluwakayode
Dimension for force MLT-2
Promise Reply
what is the dimensions of Force?
Osueke Reply
how do you calculate the 5% uncertainty of 4cm?
melia Reply
4cm/100×5= 0.2cm
haider

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications? By By Stephen Voron By Frank Levy By OpenStax By Jonathan Long By Anonymous User By OpenStax By Madison Christian By Jugnu Khan By Tod McGrath By