# 4.3 Fitting linear models to data  (Page 6/14)

 Page 6 / 14
$x$ $y$
4 44.8
5 43.1
6 38.8
7 39
8 38
9 32.7
10 30.1
11 29.3
12 27
13 25.8
 $x$ 21 25 30 31 40 50 $y$ 17 11 2 –1 –18 –40

$y=-\text{1}.\text{981}x+\text{6}0.\text{197;}$ $r=-0.\text{998}$

$x$ $y$
100 2000
80 1798
60 1589
55 1580
40 1390
20 1202
 $x$ 900 988 1000 1010 1200 1205 $y$ 70 80 82 84 105 108

$y=0.\text{121}x-38.841,r=0.998$

## Extensions

Graph $\text{\hspace{0.17em}}f\left(x\right)=0.5x+10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify that the function is a good fit for the data.

Graph $\text{\hspace{0.17em}}f\left(x\right)=-2x-10.\text{\hspace{0.17em}}$ Pick a set of five ordered pairs using inputs $\text{\hspace{0.17em}}x=-2,\text{1},\text{5},\text{6},\text{9}\text{\hspace{0.17em}}$ and use linear regression to verify the function.

$\left(-2,-6\right),\left(1,\text{−12}\right),\left(5,-20\right),\left(6,\text{−22}\right),\left(9,\text{−28}\right);\text{\hspace{0.17em}}$ Yes, the function is a good fit.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{1},600\right),\left(\text{48},\text{1},\text{55}0\right),\left(50,\text{1},505\right),\left(\text{52},\text{1},\text{54}0\right),\left(\text{54},\text{1},\text{495}\right).$

Use linear regression to determine a function $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ where the profit in thousands of dollars depends on the number of units sold in hundreds.

Find to the nearest tenth and interpret the x -intercept.

$\left(\text{189}.8,0\right)\text{\hspace{0.17em}}$ If 18,980 units are sold, the company will have a profit of zero dollars.

Find to the nearest tenth and interpret the y -intercept.

## Real-world applications

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific recorded years:

$\left(\text{25}00,2000\right),\left(\text{265}0,2001\right),\left(3000,2003\right),\left(\text{35}00,2006\right),\left(\text{42}00,2010\right)$

Use linear regression to determine a function $\text{\hspace{0.17em}}y,$ where the year depends on the population. Round to three decimal places of accuracy.

$y=0.00587x+\text{1985}.4\text{1}$

Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten year span, (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{3}05\right),\left(50,\text{35}0\right),\left(\text{52},\text{39}0\right),\left(\text{54},\text{41}0\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=\text{2}0.\text{25}x-\text{671}.\text{5}$

Predict when the profit will exceed one million dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of over the ten-year span (number of units sold, profit) for specific recorded years:

$\left(\text{46},\text{25}0\right),\left(\text{48},\text{225}\right),\left(50,\text{2}05\right),\left(\text{52},\text{18}0\right),\left(\text{54},\text{165}\right).$

Use linear regression to determine a function y , where the profit in thousands of dollars depends on the number of units sold in hundreds.

$y=-\text{1}0.\text{75}x+\text{742}.\text{5}0$

Predict when the profit will dip below the \$25,000 threshold.

## Linear Functions

Determine whether the algebraic equation is linear. $\text{\hspace{0.17em}}2x+3y=7$

Yes

what is the answer to dividing negative index
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
yeah
Morosi
prime number?
Morosi
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1