<< Chapter < Page Chapter >> Page >

Memorylessness of the exponential distribution

In [link] recall that the amount of time between customers is exponentially distributed with a mean of two minutes ( X ~ Exp (0.5)). Suppose that five minutes have elapsed since the last customer arrived. Since an unusually long amount of time has now elapsed, it would seem to be more likely for a customer to arrive within the next minute. With the exponential distribution, this is not the case–the additional time spent waiting for the next customer does not depend on how much time has already elapsed since the last customer. This is referred to as the memoryless property . Specifically, the memoryless property says that

P ( X > r + t | X > r ) = P ( X > t ) for all r ≥ 0 and t ≥ 0

For example, if five minutes has elapsed since the last customer arrived, then the probability that more than one minute will elapse before the next customer arrives is computed by using r = 5 and t = 1 in the foregoing equation.

P ( X >5 + 1 | X >5) = P ( X >1) = e ( 0.5 ) ( 1 ) ≈ 0.6065.

This is the same probability as that of waiting more than one minute for a customer to arrive after the previous arrival.

The exponential distribution is often used to model the longevity of an electrical or mechanical device. In [link] , the lifetime of a certain computer part has the exponential distribution with a mean of ten years ( X ~ Exp (0.1)). The memoryless property says that knowledge of what has occurred in the past has no effect on future probabilities. In this case it means that an old part is not any more likely to break down at any particular time than a brand new part. In other words, the part stays as good as new until it suddenly breaks. For example, if the part has already lasted ten years, then the probability that it lasts another seven years is P ( X >17| X >10) = P ( X >7) = 0.4966.

Refer to [link] where the time a postal clerk spends with his or her customer has an exponential distribution with a mean of four minutes. Suppose a customer has spent four minutes with a postal clerk. What is the probability that he or she will spend at least an additional three minutes with the postal clerk?

The decay parameter of X is m = 1 4 = 0.25, so X Exp (0.25).

The cumulative distribution function is P ( X < x ) = 1 – e –0.25 x .

We want to find P ( X >7| X >4). The memoryless property says that P ( X >7| X >4) = P ( X >3), so we just need to find the probability that a customer spends more than three minutes with a postal clerk.

This is P ( X >3) = 1 – P ( X <3) = 1 – (1 – e –0.25⋅3 ) = e –0.75 ≈ 0.4724.

This graph shows an exponential distribution. The graph slopes downward. It begins at the point (0, 0.25) on the y-axis and approaches the x-axis at the right edge of the graph. The region under the graph to the right of x = 3 is shaded to represent P(x > 3) = 0.4724.

1–(1–e^(–0.25*2)) = e^(–0.25*2).

Got questions? Get instant answers now!

Try it

Suppose that the longevity of a light bulb is exponential with a mean lifetime of eight years. If a bulb has already lasted 12 years, find the probability that it will last a total of over 19 years.

Let T = the lifetime of the light bulb. Then T Exp ( 1 8 ) .

The cumulative distribution function is P ( T < t ) = 1 − e - t 8

We need to find P ( T >19| T = 12). By the memoryless property ,

P ( T >19| T = 12) = P ( T >7) = 1 – P ( T <7) = 1 – (1 – e –7/8 )= e -7/8 ≈ 0.4169.

1 – (1 – e^(–7/8)) = e^(–7/8).

Got questions? Get instant answers now!

Relationship between the poisson and the exponential distribution

There is an interesting relationship between the exponential distribution and the Poisson distribution. Suppose that the time that elapses between two successive events follows the exponential distribution with a mean of μ units of time. Also assume that these times are independent, meaning that the time between events is not affected by the times between previous events. If these assumptions hold, then the number of events per unit time follows a Poisson distribution with mean λ = 1/μ. Recall from the chapter on Discrete Random Variables that if X has the Poisson distribution with mean λ , then P ( X = k ) = λ k e λ k ! . Conversely, if the number of events per unit time follows a Poisson distribution, then the amount of time between events follows the exponential distribution. ( k ! = k *( k -1*)( k –2)*( k -3)…3*2*1)

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask