<< Chapter < Page Chapter >> Page >
  1. What is Jill’s total displacement to the point where she stops to rest?
  2. What is the magnitude of the final displacement?
  3. What is the average velocity during her entire trip?
  4. What is the total distance traveled?
  5. Make a graph of position versus time.

A sketch of Jill’s movements is shown in [link] .

Figure shows a timeline of a person’s movement. First displacement is from the home to the right by 0.5 kilometers. Second displacement is back to the starting point. Third displacement is to the right by 1.0 kilometer. Fourth displacement is from the final point to the left by 1.75 kilometers.
Timeline of Jill’s movements.

Strategy

The problem contains data on the various legs of Jill’s trip, so it would be useful to make a table of the physical quantities. We are given position and time in the wording of the problem so we can calculate the displacements and the elapsed time. We take east to be the positive direction. From this information we can find the total displacement and average velocity. Jill’s home is the starting point x 0 . The following table gives Jill’s time and position in the first two columns, and the displacements are calculated in the third column.

Time t i (min) Position x i (km) Displacement Δ x i (km)
t 0 = 0 x 0 = 0 Δ x 0 = 0
t 1 = 9 x 1 = 0.5 Δ x 1 = x 1 x 0 = 0.5
t 2 = 18 x 2 = 0 Δ x 2 = x 2 x 1 = −0.5
t 3 = 33 x 3 = 1.0 Δ x 3 = x 3 x 2 = 1.0
t 4 = 58 x 4 = −0.75 Δ x 4 = x 4 x 3 = −1.75

Solution

  1. From the above table, the total displacement is
    Δ x i = 0.5 0.5 + 1.0 1.75 km = −0.75 km .
  2. The magnitude of the total displacement is | −0.75 | km = 0.75 km .
  3. Average velocity = Total displacement Elapsed time = v = −0.75 km 58 min = −0.013 km/min
  4. The total distance traveled (sum of magnitudes of individual displacements) is x Total = | Δ x i | = 0.5 + 0.5 + 1.0 + 1.75 km = 3.75 km .
  5. We can graph Jill’s position versus time as a useful aid to see the motion; the graph is shown in [link] .
    Graph shows position in kilometers plotted as a function of time in minutes.
    This graph depicts Jill’s position versus time. The average velocity is the slope of a line connecting the initial and final points.

Significance

Jill’s total displacement is −0.75 km, which means at the end of her trip she ends up 0.75 km due west of her home. The average velocity means if someone was to walk due west at 0.013 km/min starting at the same time Jill left her home, they both would arrive at the final stopping point at the same time. Note that if Jill were to end her trip at her house, her total displacement would be zero, as well as her average velocity. The total distance traveled during the 58 minutes of elapsed time for her trip is 3.75 km.

Check Your Understanding A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is his displacement? (b) What is the distance traveled? (c) What is the magnitude of his displacement?

Figure shows timeline of cyclist’s movement. First displacement is to the left by 3.0 kilometers. Second displacement is from the final point to the right by 2.0 kilometers.

(a) The rider’s displacement is Δ x = x f x 0 = −1 km . (The displacement is negative because we take east to be positive and west to be negative.) (b) The distance traveled is 3 km + 2 km = 5 km. (c) The magnitude of the displacement is 1 km.

Got questions? Get instant answers now!

Summary

  • Kinematics is the description of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called one-dimensional motion.
  • Displacement is the change in position of an object. The SI unit for displacement is the meter. Displacement has direction as well as magnitude.
  • Distance traveled is the total length of the path traveled between two positions.
  • Time is measured in terms of change. The time between two position points x 1 and x 2 is Δ t = t 2 t 1 . Elapsed time for an event is Δ t = t f t 0 , where t f is the final time and t 0 is the initial time. The initial time is often taken to be zero.
  • Average velocity v is defined as displacement divided by elapsed time. If x 1 , t 1 and x 2 , t 2 are two position time points, the average velocity between these points is
    v = Δ x Δ t = x 2 x 1 t 2 t 1 .

Conceptual questions

Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Identify each quantity in your example specifically.

You drive your car into town and return to drive past your house to a friend’s house.

Got questions? Get instant answers now!

Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which magnitude of displacement and displacement are exactly the same?

Got questions? Get instant answers now!

Bacteria move back and forth using their flagella (structures that look like little tails). Speeds of up to 50 μm/s (50 × 10 −6 m/s) have been observed. The total distance traveled by a bacterium is large for its size, whereas its displacement is small. Why is this?

If the bacteria are moving back and forth, then the displacements are canceling each other and the final displacement is small.

Got questions? Get instant answers now!

Give an example of a device used to measure time and identify what change in that device indicates a change in time.

Got questions? Get instant answers now!

Does a car’s odometer measure distance traveled or displacement?

Distance traveled

Got questions? Get instant answers now!

During a given time interval the average velocity of an object is zero. What can you say conclude about its displacement over the time interval?

Got questions? Get instant answers now!

Problems

Consider a coordinate system in which the positive x axis is directed upward vertically. What are the positions of a particle (a) 5.0 m directly above the origin and (b) 2.0 m below the origin?

Got questions? Get instant answers now!

A car is 2.0 km west of a traffic light at t = 0 and 5.0 km east of the light at t = 6.0 min. Assume the origin of the coordinate system is the light and the positive x direction is eastward. (a) What are the car’s position vectors at these two times? (b) What is the car’s displacement between 0 min and 6.0 min?

a. x 1 = ( −2.0 m ) i ^ , x 2 = ( 5.0 m ) i ^ ; b. 7.0 m east

Got questions? Get instant answers now!

The Shanghai maglev train connects Longyang Road to Pudong International Airport, a distance of 30 km. The journey takes 8 minutes on average. What is the maglev train’s average velocity?

Got questions? Get instant answers now!

The position of a particle moving along the x -axis is given by x ( t ) = 4.0 2.0 t m. (a) At what time does the particle cross the origin? (b) What is the displacement of the particle between t = 3.0 s and t = 6.0 s ?

a. t = 2.0 s; b. x ( 6.0 ) x ( 3.0 ) = −8.0 ( −2.0 ) = −6.0 m

Got questions? Get instant answers now!

A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?

Got questions? Get instant answers now!

On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth’s atmosphere over Chelyabinsk, Russia, and exploded at an altitude of 23.5 km. Eyewitnesses could feel the intense heat from the fireball, and the blast wave from the explosion blew out windows in buildings. The blast wave took approximately 2 minutes 30 seconds to reach ground level. (a) What was the average velocity of the blast wave? b) Compare this with the speed of sound, which is 343 m/s at sea level.

a. 150.0 s, v = 156.7 m/s ; b. 45.7% the speed of sound at sea level

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask