Anatomy & Physiology 06 The Skeletal System


Access: Public

Start FlashCards Download PDF Flashcards Series Learn

Get the best Anatomy & Physiology course in your pocket!

Tennis player

This photograph shows a man playing tennis.
Athletes rely on toned skeletal muscles to supply the force required for movement. (credit: Emmanuel Huybrechts/flickr)

Chapter objectives

After studying this chapter, you will be able to:

  • Explain the organization of muscle tissue
  • Describe the function and structure of skeletal, cardiac muscle, and smooth muscle
  • Explain how muscles work with tendons to move the body
  • Describe how muscles contract and relax
  • Define the process of muscle metabolism
  • Explain how the nervous system controls muscle tension
  • Relate the connections between exercise and muscle performance
  • Explain the development and regeneration of muscle tissue

When most people think of muscles, they think of the muscles that are visible just under the skin, particularly of the limbs. These are skeletal muscles, so-named because most of them move the skeleton. But there are two other types of muscle in the body, with distinctly different jobs. Cardiac muscle, found in the heart, is concerned with pumping blood through the circulatory system. Smooth muscle is concerned with various involuntary movements, such as having one’s hair stand on end when cold or frightened, or moving food through the digestive system. This chapter will examine the structure and function of these three types of muscles.

Flashcards PDF eBook: 
Anatomy & Physiology 06 The Skeletal System
Download Skeletal System Flashcards PDF eBook
13 Pages
English US
Educational Materials

Sample Questions from the Anatomy & Physiology 06 The Skeletal System Flashcards

Question: In what ways do intramembranous and endochondral ossification differ?


In intramembranous ossification, bone develops directly from sheets of mesenchymal connective tissue, but in endochondral ossification, bone develops by replacing hyaline cartilage. Intramembranous ossification is complete by the end of the adolescent growth spurt, while endochondral ossification lasts into young adulthood. The flat bones of the face, most of the cranial bones, and a good deal of the clavicles (collarbones) are formed via intramembranous ossification, while bones at the base of the skull and the long bones form via endochondral ossification.

Question: What are the structural and functional differences between a tarsal and a metatarsal?


Structurally, a tarsal is a short bone, meaning its length, width, and thickness are about equal, while a metatarsal is a long bone whose length is greater than its width. Functionally, the tarsal provides limited motion, while the metatarsal acts as a lever.

Question: During the early years of space exploration our astronauts, who had been floating in space, would return to earth showing significant bone loss dependent on how long they were in space. Discuss how this might happen and what could be done to alleviate this condition.


Astronauts floating in space were not exerting significant pressure on their bones; they were "weightless." Without the force of gravity exerting pressure on the bones, bone mass was lost. To alleviate this condition, astronauts now do resistive exercise designed to apply forces to the bones and thus help keep them healthy.

Question: If you were a dietician who had a young female patient with a family history of osteoporosis, what foods would you suggest she include in her diet? Why?


Since maximum bone mass is achieved by age 30, I would want this patient to have adequate calcium and vitamin D in her diet. To do this, I would recommend ingesting milk and other dairy foods, green leafy vegetables, and intact canned sardines so she receives sufficient calcium. Intact salmon would be a good source for calcium and vitamin D. Other fatty fish would also be a good vitamin D source.

Question: What is the difference between closed reduction and open reduction? In what type of fracture would closed reduction most likely occur? In what type of fracture would open reduction most likely occur?


In closed reduction, the broken ends of a fractured bone can be reset without surgery. Open reduction requires surgery to return the broken ends of the bone to their correct anatomical position. A partial fracture would likely require closed reduction. A compound fracture would require open reduction.

Question: What are the structural and functional differences between the femur and the patella?


Structurally, the femur is a long bone, meaning its length is greater than its width, while the patella, a sesamoid bone, is small and round. Functionally, the femur acts as a lever, while the patella protects the patellar tendon from compressive forces.

Question: Considering how a long bone develops, what are the similarities and differences between a primary and a secondary ossification center?


A single primary ossification center is present, during endochondral ossification, deep in the periosteal collar. Like the primary ossification center, secondary ossification centers are present during endochondral ossification, but they form later, and there are two of them, one in each epiphysis.

Question: In terms of origin and composition, what are the differences between an internal callus and an external callus?


The internal callus is produced by cells in the endosteum and is composed of a fibrocartilaginous matrix. The external callus is produced by cells in the periosteum and consists of hyaline cartilage and bone.

Question: The skeletal system is composed of bone and cartilage and has many functions. Choose three of these functions and discuss what features of the skeletal system allow it to accomplish these functions.


It supports the body. The rigid, yet flexible skeleton acts as a framework to support the other organs of the body. It facilitates movement. The movable joints allow the skeleton to change shape and positions; that is, move. It protects internal organs. Parts of the skeleton enclose or partly enclose various organs of the body including our brain, ears, heart, and lungs. Any trauma to these organs has to be mediated through the skeletal system. It produces blood cells. The central cavity of long bones is filled with marrow. The red marrow is responsible for forming red and white blood cells. It stores and releases minerals and fat. The mineral component of bone, in addition to providing hardness to bone, provides a mineral reservoir that can be tapped as needed. Additionally, the yellow marrow, which is found in the central cavity of long bones along with red marrow, serves as a storage site for fat.

Question: If the articular cartilage at the end of one of your long bones were to degenerate, what symptoms do you think you would experience? Why?


If the articular cartilage at the end of one of your long bones were to deteriorate, which is actually what happens in osteoarthritis, you would experience joint pain at the end of that bone and limitation of motion at that joint because there would be no cartilage to reduce friction between adjacent bones and there would be no cartilage to act as a shock absorber.

Question: In what ways is the structural makeup of compact and spongy bone well suited to their respective functions?


The densely packed concentric rings of matrix in compact bone are ideal for resisting compressive forces, which is the function of compact bone. The open spaces of the trabeculated network of spongy bone allow spongy bone to support shifts in weight distribution, which is the function of spongy bone.

Start FlashCards Download PDF Flashcards Series Learn
Disclaimer:  This course does NOT provide the education or experience needed for the diagnosing or treating any medical condition, all site contents are provided as general information only and should not be taken as medical advice.
Source:  OpenStax College. Anatomy & Physiology, OpenStax-CNX Web site., Jun 11, 2014
Copy and paste the following HTML code into your website or blog.
<iframe src="" width="600" height="600" frameborder="0" marginwidth="0" marginheight="0" scrolling="yes" style="border:1px solid #CCC; border-width:1px 1px 0; margin-bottom:5px" allowfullscreen webkitallowfullscreen mozallowfullscreen> </iframe>