<< Chapter < Page Chapter >> Page >
All quantities pertaining to motion are characteristically relative in nature.

The concept of relative motion in two or three dimensions is exactly same as discussed for the case of one dimension. The motion of an object is observed in two reference systems as before – the earth and a reference system, which moves with constant velocity with respect to earth. The only difference here is that the motion of the reference system and the object ,being observed, can take place in two dimensions. The condition that observations be carried out in inertial frames is still a requirement to the scope of our study of relative motion in two dimensions.

As a matter of fact, theoretical development of the equation of relative velocity is so much alike with one dimensional case that the treatment in this module may appear repetition of the text of earlier module. However, application of relative velocity concept in two dimensions is different in content and details, requiring a separate module to study the topic.

Relative motion in two dimensions

The important aspect of relative motion in two dimensions is that we can not denote vector attributes of motion like position, velocity and acceleration as signed scalars as in the case of one dimension. These attributes can now have any direction in two dimensional plane (say “xy” plane) and as such they should be denoted with either vector notations or component scalars with unit vectors.

Position of the point object

We consider two observers A and B. The observer “A” is at rest with respect to earth, whereas observer “B” moves with a constant velocity with respect to the observer on earth i.e. “A”. The two observers watch the motion of the point like object “C”. The motions of “B” and “C” are as shown along dotted curves in the figure below. Note that the path of observer "B" is a straight line as it is moving with constant velocity. However, there is no such restriction on the motion of object C, which can be accelerated as well.

The position of the object “C” as measured by the two observers “A” and “B” are r C A and r C B . The observers are represented by their respective frame of reference in the figure.

Positions

The observers are represented by their respective frame of reference.

Here,

r C A = r B A + r C B

Velocity of the point object

We can obtain velocity of the object by differentiating its position with respect to time. As the measurements of position in two references are different, it is expected that velocities in two references are different,

v C A = đ r C A đ t

and

v C B = đ r C B đ t

The velocities of the moving object “C” ( v C A and v C B ) as measured in two reference systems are shown in the figure. Since the figure is drawn from the perspective of “A” i.e. the observer on the ground, the velocity v C A of the object "C" with respect to "A" is tangent to the curved path.

Velocity

The observers measure different velocities.

Now, we can obtain relation between these two velocities, using the relation r C A = r B A + r C B and differentiating the terms of the equation with respect to time as :

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask