<< Chapter < Page Chapter >> Page >

Relativistic energy and momentum

We know classically that kinetic energy and momentum are related to each other, since

KE class = p 2 2 m = ( mv ) 2 2 m = 1 2 mv 2 .

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This produces

E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {}

where E size 12{E} {} is the relativistic total energy and p size 12{p} {} is the relativistic momentum. This relationship between relativistic energy and relativistic momentum is more complicated than the classical, but we can gain some interesting new insights by examining it. First, total energy is related to momentum and rest mass. At rest, momentum is zero, and the equation gives the total energy to be the rest energy mc 2 (so this equation is consistent with the discussion of rest energy above). However, as the mass is accelerated, its momentum p increases, thus increasing the total energy. At sufficiently high velocities, the rest energy term ( mc 2 ) 2 becomes negligible compared with the momentum term ( pc ) 2 ; thus, E = pc at extremely relativistic velocities.

If we consider momentum p size 12{p} {} to be distinct from mass, we can determine the implications of the equation E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} for a particle that has no mass. If we take m size 12{m} {} to be zero in this equation, then E = pc size 12{E= ital "pc"} {} , or p = E / c size 12{p=E/c} {} . Massless particles have this momentum. There are several massless particles found in nature, including photons (these are quanta of electromagnetic radiation). Another implication is that a massless particle must travel at speed c size 12{c} {} and only at speed c size 12{c} {} . While it is beyond the scope of this text to examine the relationship in the equation E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} in detail, we can see that the relationship has important implications in special relativity.

Problem-solving strategies for relativity

  1. Examine the situation to determine that it is necessary to use relativity . Relativistic effects are related to γ = 1 1 v 2 c 2 size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } } {} , the quantitative relativistic factor. If γ size 12{γ} {} is very close to 1, then relativistic effects are small and differ very little from the usually easier classical calculations.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns).
  3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in particular for information on relative velocity v size 12{v} {} .
  4. Make certain you understand the conceptual aspects of the problem before making any calculations. Decide, for example, which observer sees time dilated or length contracted before plugging into equations. If you have thought about who sees what, who is moving with the event being observed, who sees proper time, and so on, you will find it much easier to determine if your calculation is reasonable.
  5. Determine the primary type of calculation to be done to find the unknowns identified above. You will find the section summary helpful in determining whether a length contraction, relativistic kinetic energy, or some other concept is involved.
  6. Do not round off during the calculation. As noted in the text, you must often perform your calculations to many digits to see the desired effect. You may round off at the very end of the problem, but do not use a rounded number in a subsequent calculation.
  7. Check the answer to see if it is reasonable: Does it make sense? This may be more difficult for relativity, since we do not encounter it directly. But you can look for velocities greater than c size 12{c} {} or relativistic effects that are in the wrong direction (such as a time contraction where a dilation was expected).

Questions & Answers

what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask