<< Chapter < Page Chapter >> Page >

Relativistic energy and momentum

We know classically that kinetic energy and momentum are related to each other, since

KE class = p 2 2 m = ( mv ) 2 2 m = 1 2 mv 2 .

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This produces

E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {}

where E size 12{E} {} is the relativistic total energy and p size 12{p} {} is the relativistic momentum. This relationship between relativistic energy and relativistic momentum is more complicated than the classical, but we can gain some interesting new insights by examining it. First, total energy is related to momentum and rest mass. At rest, momentum is zero, and the equation gives the total energy to be the rest energy mc 2 (so this equation is consistent with the discussion of rest energy above). However, as the mass is accelerated, its momentum p increases, thus increasing the total energy. At sufficiently high velocities, the rest energy term ( mc 2 ) 2 becomes negligible compared with the momentum term ( pc ) 2 ; thus, E = pc at extremely relativistic velocities.

If we consider momentum p size 12{p} {} to be distinct from mass, we can determine the implications of the equation E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} for a particle that has no mass. If we take m size 12{m} {} to be zero in this equation, then E = pc size 12{E= ital "pc"} {} , or p = E / c size 12{p=E/c} {} . Massless particles have this momentum. There are several massless particles found in nature, including photons (these are quanta of electromagnetic radiation). Another implication is that a massless particle must travel at speed c size 12{c} {} and only at speed c size 12{c} {} . While it is beyond the scope of this text to examine the relationship in the equation E 2 = ( pc ) 2 + ( mc 2 ) 2 , size 12{E rSup { size 8{2} } = \( ital "pc" \) rSup { size 8{2} } + \( ital "mc" \) rSup { size 8{2} } } {} in detail, we can see that the relationship has important implications in special relativity.

Problem-solving strategies for relativity

  1. Examine the situation to determine that it is necessary to use relativity . Relativistic effects are related to γ = 1 1 v 2 c 2 size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } } {} , the quantitative relativistic factor. If γ size 12{γ} {} is very close to 1, then relativistic effects are small and differ very little from the usually easier classical calculations.
  2. Identify exactly what needs to be determined in the problem (identify the unknowns).
  3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in particular for information on relative velocity v size 12{v} {} .
  4. Make certain you understand the conceptual aspects of the problem before making any calculations. Decide, for example, which observer sees time dilated or length contracted before plugging into equations. If you have thought about who sees what, who is moving with the event being observed, who sees proper time, and so on, you will find it much easier to determine if your calculation is reasonable.
  5. Determine the primary type of calculation to be done to find the unknowns identified above. You will find the section summary helpful in determining whether a length contraction, relativistic kinetic energy, or some other concept is involved.
  6. Do not round off during the calculation. As noted in the text, you must often perform your calculations to many digits to see the desired effect. You may round off at the very end of the problem, but do not use a rounded number in a subsequent calculation.
  7. Check the answer to see if it is reasonable: Does it make sense? This may be more difficult for relativity, since we do not encounter it directly. But you can look for velocities greater than c size 12{c} {} or relativistic effects that are in the wrong direction (such as a time contraction where a dilation was expected).

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask