<< Chapter < Page Chapter >> Page >

Sometimes you want more detail than the overall timing of the application. But you don’t have time to modify the code to insert several hundred etime calls into your code. Profiles are also very useful when you have been handed a strange 20,000-line application program and told to figure out how it works and then improve its performance.

Most compilers provide a facility to automatically insert timing calls into your code at the entry and exit of each routine at compile time. While your program runs, the entry and exit times are recorded and then dumped into a file. A separate utility summarizes the execution patterns and produces a report that shows the percentage of the time spent in each of your routines and the library routines.

The profile gives you a sense of the shape of the execution profile. That is, you can see that 10% of the time is spent in subroutine A, 5% in subroutine B, etc. Naturally, if you add all of the routines together they should account for 100% of the overall time spent. From these percentages you can construct a picture — a profile — of how execution is distributed when the program runs. Though not representative of any particular profiling tool, the histograms in [link] and [link] depict these percentages, sorted from left to right, with each vertical column representing a different routine. They help illustrate different profile shapes.

Sharp profile — dominated by routine 1

This figure is a histogram, with routines on the horizontal axis and % time on the vertical axis. For routines of value 1, the histogram shows a % time value of 65. For routines of value 2, the histogram shows a % time value of 20. For routines of value 3, the histogram shows a % time value of 10. For routines of value 4, the histogram shows a % time value of 5. For routines of value 5, the histogram shows a % time value of approximately 2. Above the histograms is a dashed curve that follows the decreasing trend of the histogram as the number of routines increases.

A sharp profile says that most of the time is spent in one or two procedures, and if you want to improve the program’s performance you should focus your efforts on tuning those procedures. A minor optimization in a heavily executed line of code can sometimes have a great effect on the overall runtime, given the right opportunity. A flat profile , The term “flat profile” is a little overloaded. We are using it to describe a profile that shows an even distribution of time throughout the program. You will also see the label flat profile used to draw distinction from a call graph profile, as described below. on the other hand, tells you that the runtime is spread across many routines, and effort spent optimizing any one or two will have little benefit in speeding up the program. Of course, there are also programs whose execution profile falls somewhere in the middle.

Flat profile — no routine predominates

This figure is a histogram, with routines on the horizontal axis and % time on the vertical axis. For routines of value 1, the histogram shows a % time value of approximately 22. For routines of value 2, the histogram shows a % time value of 20. For routines of value 3, the histogram shows a % time value of approximately 18. For routines of value 4, the histogram shows a % time value of approximately 22. For routines of value 5, the histogram shows a % time value of approximately 18. Above the histograms is a dashed curve that follows the decreasing trend of the histogram as the number of routines increases.

We cannot predict with absolute certainty what you are likely to find when you profile your programs, but there are some general trends. For instance, engineering and scientific codes built around matrix solutions often exhibit very sharp profiles. The runtime is dominated by the work performed in a handful of routines. To tune the code, you need to focus your efforts on those routines to make them more efficient. It may involve restructuring loops to expose parallelism, providing hints to the compiler, or rearranging memory references. In any case, the challenge is tangible; you can see the problems you have to fix.

There are limits to how much tuning one or two routines will improve your runtime, of course. An often quoted rule of thumb is Amdahl’s Law , derived from remarks made in 1967 by one of the designers of the IBM 360 series, and founder of Amdahl Computer, Gene Amdahl. Strictly speaking, his remarks were about the performance potential of parallel computers, but people have adapted Amdahl’s Law to describe other things too. For our purposes, it goes like this: Say you have a program with two parts, one that can be optimized so that it goes infinitely fast and another that can’t be optimized at all. Even if the optimizable portion makes up 50% of the initial runtime, at best you will be able to cut the total runtime in half. That is, your runtime will eventually be dominated by the portion that can’t be optimized. This puts an upper limit on your expectations when tuning.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask