# 0.1 N = 11 winograd fft module

 Page 1 / 1
A very efficient length N = 11 FFT module that can be use alone or with the PFA or the WFTA. Designed by Howard Johnson in 1981.

## N=11 fft module

A FORTRAN implementation of a length-11 FFT module to be used in a Prime Factor Algorithm program.

```C DATA C111,C112 / 1.10000000, 0.33166250 /DATA C113,C114 / 0.51541500, 0.94125350 / DATA C115,C116 / 1.41435370, 0.85949300 /DATA C117,C118 / 0.04231480, 0.38639280 / DATA C119,C1110/ 0.51254590, 1.07027569 /DATA C1111,C1112/ 0.55486070, 1.24129440 / DATA C1113,C1114/ 0.20897830, 0.37415717 /DATA C1115,C1116/ 0.04992992, 0.65815896 / DATA C1117,C1118/ 0.63306543, 1.08224607 /DATA C1119,C1120/ 0.81720738, 0.42408709 / CC-----------------WFTA N=11---------------------------- C111 T1 = X(I(2)) + X(I(11)) T6 = X(I(2)) - X(I(11))T2 = X(I(3)) + X(I(10)) T7 = X(I(3)) - X(I(10))T3 = X(I(4)) + X(I(9)) T8 = X(I(4)) - X(I(9))T4 = X(I(5)) + X(I(8)) T9 = X(I(5)) - X(I(8))T5 = X(I(6)) + X(I(7)) T10= X(I(6)) - X(I(7))C U1 = Y(I(2)) + Y(I(11))U6 = Y(I(2)) - Y(I(11)) U2 = Y(I(3)) + Y(I(10))U7 = Y(I(3)) - Y(I(10)) U3 = Y(I(4)) + Y(I(9))U8 = Y(I(4)) - Y(I(9)) U4 = Y(I(5)) + Y(I(8))U9 = Y(I(5)) - Y(I(8)) U5 = Y(I(6)) + Y(I(7))U10= Y(I(6)) - Y(I(7)) CT11 = T1 + T2 T12 = T3 + T5T13 = T4 + T11 + T12 T14 = T7 - T8T15 = T6 + T10 CU11 = U1 + U2 U12 = U3 + U5U13 = U4 + U11 + U12 U14 = U7 - U8U15 = U6 + U10 CAM0 = X(I(1)) + T13 AM2 = (T14 - T15 - T9) * C112AM3 = (T2 - T4) * C113 AM4 = (T1 - T4) * C114AM5 = (T2 - T1) * C115 AM6 = (T5 - T4) * C116AM7 = (T3 - T4) * C117 AM8 = (T5 - T3) * C118AM11 = (T12 - T11) * C1111 AM14 = (T6 + T7) * C1114AM17 = (T8 - T10) * C1117 AM20 = (T14 + T15) * C1120C AN0 = Y(I(1)) + U13AN2 = (U14 - U15 - U9) * C112 AN3 = (U2 - U4) * C113AN4 = (U1 - U4) * C114 AN5 = (U2 - U1) * C115AN6 = (U5 - U4) * C116 AN7 = (U3 - U4) * C117AN8 = (U5 - U3) * C118 AN11 = (U12 - U11) * C1111AN14 = (U6 + U7) * C1114 AN17 = (U8 - U10) * C1117AN20 = (U14 + U15) * C1120 CS0 = AM0 - C111 * T13 S7 = AM11 + C1110 * (T1 - T3)S8 = AM11 + (T2 - T5) * C119 S9 = AM14 + (T6 - T9) * C1113S10 =-AM14 + (T7 + T9) * C1112 S11 = AM17 + (T8 - T9) * C1116S12 =-AM17 + (T9 - T10) * C1115 S13 = AM20 + (T6 - T8) * C1119S14 =-AM20 + (T7 + T10) * C1118 CV0 = AN0 - C111 * U13 V7 = AN11 + C1110 * (U1 - U3)V8 = AN11 + (U2 - U5) * C119 V9 = AN14 + (U6 - U9) * C1113V10 =-AN14 + (U7 + U9) * C1112 V11 = AN17 + (U8 - U9) * C1116V12 =-AN17 + (U9 - U10) * C1115 V13 = AN20 + (U6 - U8) * C1119V14 =-AN20 + (U7 + U10) * C1118 CS15 = S0 + S7 + AM7 + AM8 S16 = S0 - S7 - AM4 - AM5S17 = S0 + S8 + AM6 - AM8 S18 = S0 - S8 - AM3 + AM5S19 = S0 + AM3 + AM4 - AM6 - AM7 S20 = S13 + AM2 + S11S21 = S13 - AM2 - S9 S22 = S14 + AM2 + S12S23 = S14 - AM2 - S10 S24 = S9 + S10 + S11 + S12 - AM2C V15 = V0 + V7 + AN7 + AN8V16 = V0 - V7 - AN4 - AN5 V17 = V0 + V8 + AN6 - AN8V18 = V0 - V8 - AN3 + AN5 V19 = V0 + AN3 + AN4 - AN6 - AN7V20 = V13 + AN2 + V11 V21 = V13 - AN2 - V9V22 = V14 + AN2 + V12 V23 = V14 - AN2 - V10V24 = V9 + V10 + V11 + V12 - AN2 CX(I(1)) = AM0 X(I(2)) = S19 + V24X(I(3)) = S15 + V20 X(I(4)) = S16 + V21X(I(5)) = S17 - V22 X(I(6)) = S18 + V23X(I(7)) = S18 - V23 X(I(8)) = S17 + V22X(I(9)) = S16 - V21 X(I(10))= S15 - V20X(I(11))= S19 - V24 CY(I(1)) = AN0 Y(I(2)) = V19 - S24Y(I(3)) = V15 - S20 Y(I(4)) = V16 - S21Y(I(5)) = V17 + S22 Y(I(6)) = V18 - S23Y(I(7)) = V18 + S23 Y(I(8)) = V17 - S22Y(I(9)) = V16 + S21 Y(I(10))= V15 + S20Y(I(11))= V19 + S24 CGOTO 20 CFigure. Length-11 FFT Module```

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Robert Murphy By Janet Forrester By Courntey Hub By Brooke Delaney By By Brooke Delaney By OpenStax By OpenStax By Anh Dao By Dan Ariely