<< Chapter < Page Chapter >> Page >
This module contains the acknowledgments from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr.

Many extraordinarily talented people are responsible for helping to create this text. We wish to acknowledge the efforts and skills of the following mathematicians. Their contributions have been invaluable.

  • Jerald T. Ball, Chabot College
  • Ron L. Bohuslov, College of Alameda
  • Anita Buker, Miami-Dade Community College
  • Ann Bretscher, University of Georgia
  • Loren Gaither, Paul D. Camp Community College
  • John Gordon, Georgia State University
  • Patricia Hauss, Arapahoe Community College
  • Jean Holton, Tidewater Community College
  • Katherine Huppler, St. Cloud State University
  • Bruce Jacobs, Laney College
  • Donald R. Johnson, Scottsdate Community College
  • John Lenhert, Long Beach Community College
  • Roland E. Lentz, Mankato State University
  • Jean Moran, Donnelley College
  • Patricia Morgan, San Diego State University
  • Charles Peselnick, Devry Institute of Technology
  • Mazina S. Porter, Paul D. Camp Community College
  • David Price, Tarrant County Junior College
  • Harvey Reynolds, Golden West College
  • J. Doug Richey, Northeast Texas Community College
  • Joyce L. Riseberg, Montgomery College
  • Mark Saks, Community College of Philadelphia
  • Nancy Wadlington Spears, Everett Community College
  • Molly Sumner, Pikes Peak Community College
  • Ian Walton, Mission College
  • Elizabeth M. Wayt, Tennessee State University
  • John Whitcomb, University of North Dakota

Special thanks to the following individuals for their careful accuracy reviews of manuscript, galleys, and page proofs: Steve Blasberg, West Valley College; Wade Ellis Sr., University of Michigan; John R. Martin, Tarrant County Junior College; Jane Ellis, Amy Miller, and Guy Sanders, Branham High School for their help.

Our sincere thanks to Debbie Wiedemann for her encouragement, suggestions concerning psychobiological examples, proofreading much of the manuscript, and typing many of the section exercises; Sandi Wiedermann for collating the annotated reviews, counting the examples and exercises, and her untiring use of "white-out"; and Jane Ellis for solving and typing all the exercise solutions.

We thank the following people for their excellent work on the various ancillary items that accompanied the original release of Elementary Algebra (not currently included with the Connexions version): Jane Ellis (Instructor's Manual); John R. Martin, Tarrant County Junior College (Student Solutions Manual and Study Guide); Virginia Hamilton, Shawnee State University (Computerized Test Bank); Patricia Morgan, San Diego State University (Prepared Tests); and George W. Bergeman, Northern Virginia Community College (MAXIS Interactive Software).

We also wish to thank the talented people at Saunders College Publishing whose efforts made this text run smoothly and less painfully than we had imagined. Our particular thanks to Bob Stern, Mathematics Editor; Ellen Newman, Developmental Editor; and Janet B. Nuciforo, Project Editor. Their guidance, suggestions, open minds to our suggestions and concerns, and encouragement have been extraordinarily helpful. Although there were times we thought we might be permanently damaged from rereading and rewriting, their efforts have improved this text immensely. It is a pleasure to work with such high-quality professionals.

Denny Burzynski Wade Ellis, Jr. San Jose, California

I would like to thank Doug Campbell, Ed Lodi, and Guy Sanders for listening to my frustrations and encouraging me on. Thanks also go to my cousin, David Raffety, who long ago in Sequoia National Forest told me what a differential equation is.

Particular thanks go to each of my colleagues at West Valley College. Our everyday conversations regarding mathematics instruction have been of the utmost importance to the development of this text and to my teaching career.

D.B.


À Sandi C'est pour toi, l'étoile au centre de mon univers.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary algebra. OpenStax CNX. May 08, 2009 Download for free at http://cnx.org/content/col10614/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary algebra' conversation and receive update notifications?

Ask