<< Chapter < Page Chapter >> Page >

Free energy changes may also use the standard free energy of formation ( Δ G f ° ) , for each of the reactants and products involved in the reaction. The standard free energy of formation is the free energy change that accompanies the formation of one mole of a substance from its elements in their standard states. Similar to the standard enthalpies of formation, Δ G f ° is by definition zero for elemental substances under standard state conditions. The approach to computing the free energy change for a reaction using this approach is the same as that demonstrated previously for enthalpy and entropy changes. For the reaction

m A + n B x C + y D ,

the standard free energy change at room temperature may be calculated as

Δ G 298 ° = Δ G ° = ν Δ G 298 ° ( products ) ν Δ G 298 ° ( reactants ) = [ x Δ G f ° ( C ) + y Δ G f ° ( D ) ] [ m Δ G f ° ( A ) + n Δ G f ° ( B ) ] .

Calculation of Δ G 298 °

Consider the decomposition of yellow mercury(II) oxide.

HgO ( s , yellow ) Hg ( l ) + 1 2 O 2 ( g )

Calculate the standard free energy change at room temperature, Δ G 298 ° , using (a) standard free energies of formation and (b) standard enthalpies of formation and standard entropies. Do the results indicate the reaction to be spontaneous or nonspontaneous under standard conditions?

Solution

The required data are available in Appendix G and are shown here.

Compound Δ G f ° (kJ/mol) Δ H f ° (kJ/mol) S 298 ° (J/K·mol)
HgO ( s , yellow) −58.43 −90.46 71.13
Hg( l ) 0 0 75.9
O 2 ( g ) 0 0 205.2

(a) Using free energies of formation:

Δ G 298 ° = ν G S 298 ° (products) ν Δ G 298 ° (reactants)
= [ 1 Δ G 298 ° Hg ( l ) + 1 2 Δ G 298 ° O 2 ( g ) ] 1 Δ G 298 ° HgO ( s , yellow )
= [ 1 mol (0 kJ/mol) + 1 2 mol(0 kJ/mol) ] 1 mol(−58.43 kJ/mol) = 58.43 kJ/mol

(b) Using enthalpies and entropies of formation:

Δ H 298 ° = ν Δ H 298 ° (products) ν Δ H 298 ° (reactants)
= [ 1 Δ H 298 ° Hg ( l ) + 1 2 Δ H 298 ° O 2 ( g ) ] 1 Δ H 298 ° HgO ( s , yellow )
= [ 1 mol ( 0 kJ/mol ) + 1 2 mol ( 0 kJ/mol ) ] 1 mol ( −90.46 kJ/mol ) = 90.46 kJ/mol
Δ S 298 ° = ν Δ S 298 ° (products) ν Δ S 298 ° (reactants)
= [ 1 Δ S 298 ° Hg ( l ) + 1 2 Δ S 298 ° O 2 ( g ) ] 1 Δ S 298 ° HgO ( s , yellow )
= [ 1 mol ( 75.9 J/mol K ) + 1 2 mol ( 205.2 J/mol K ) ] 1 mol ( 71.13 J/mol K ) = 107.4 J/mol K
Δ G ° = Δ H ° T Δ S ° = 90.46 kJ 298.15 K × 107.4 J/K·mol × 1 kJ 1000 J
Δ G ° = ( 90.46 32.01 ) kJ/mol = 58.45 kJ/mol

Both ways to calculate the standard free energy change at 25 °C give the same numerical value (to three significant figures), and both predict that the process is nonspontaneous ( not spontaneous) at room temperature.

Check your learning

Calculate Δ G ° using (a) free energies of formation and (b) enthalpies of formation and entropies ( Appendix G ). Do the results indicate the reaction to be spontaneous or nonspontaneous at 25 °C?

C 2 H 4 ( g ) H 2 ( g ) + C 2 H 2 ( g )

Answer:

−141.5 kJ/mol, nonspontaneous

Got questions? Get instant answers now!

Temperature dependence of spontaneity

As was previously demonstrated in this chapter’s section on entropy, the spontaneity of a process may depend upon the temperature of the system. Phase transitions, for example, will proceed spontaneously in one direction or the other depending upon the temperature of the substance in question. Likewise, some chemical reactions can also exhibit temperature dependent spontaneities. To illustrate this concept, the equation relating free energy change to the enthalpy and entropy changes for the process is considered:

Questions & Answers

What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what's cornea?
Majak Reply
what are cell
Achol
Explain the following terms . (1) Abiotic factors in an ecosystem
Nomai Reply
Abiotic factors are non living components of ecosystem.These include physical and chemical elements like temperature,light,water,soil,air quality and oxygen etc
Qasim
what is biology
daniel Reply
what is diffusion
Emmanuel Reply
passive process of transport of low-molecular weight material according to its concentration gradient
AI-Robot
what is production?
Catherine
Pathogens and diseases
how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
cell is the smallest unit of the humanity biologically
Abraham
ok
Achol
what is biology
Victoria Reply
what is biology
Abraham
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask