<< Chapter < Page Chapter >> Page >

Negative feedback loop

This diagram shows a negative feedback loop using the example of glucocorticoid regulation in the blood. Step 1 in the cycle is when an imbalance occurs. The hypothalamus perceives low blood concentrations of glucocorticoids in the blood. This is illustrated by there being only 5 glucocorticoids floating in a cross section of an artery. Step 2 in the cycle is hormone release, where the hypothalamus releases corticotropin-releasing hormone (CRH). Step 3 is labeled correction. Here, the CRH release starts a hormone cascade that triggers the adrenal gland to release glucocorticoid into the blood. This allows the blood concentration of glucocorticoid to increase, as illustrated by 8 glucocorticoid molecules now being present in the cross section of the artery. Step 4 is labeled negative feedback. Here, the hypothalamus perceives normal concentrations of glucocorticoids in the blood and stops releasing CRH. This brings blood glucocorticoid levels back to homeostasis.
The release of adrenal glucocorticoids is stimulated by the release of hormones from the hypothalamus and pituitary gland. This signaling is inhibited when glucocorticoid levels become elevated by causing negative signals to the pituitary gland and hypothalamus.

Role of endocrine gland stimuli

Reflexes triggered by both chemical and neural stimuli control endocrine activity. These reflexes may be simple, involving only one hormone response, or they may be more complex and involve many hormones, as is the case with the hypothalamic control of various anterior pituitary–controlled hormones.

Humoral stimuli are changes in blood levels of non-hormone chemicals, such as nutrients or ions, which cause the release or inhibition of a hormone to, in turn, maintain homeostasis. For example, osmoreceptors in the hypothalamus detect changes in blood osmolarity (the concentration of solutes in the blood plasma). If blood osmolarity is too high, meaning that the blood is not dilute enough, osmoreceptors signal the hypothalamus to release ADH. The hormone causes the kidneys to reabsorb more water and reduce the volume of urine produced. This reabsorption causes a reduction of the osmolarity of the blood, diluting the blood to the appropriate level. The regulation of blood glucose is another example. High blood glucose levels cause the release of insulin from the pancreas, which increases glucose uptake by cells and liver storage of glucose as glycogen.

An endocrine gland may also secrete a hormone in response to the presence of another hormone produced by a different endocrine gland. Such hormonal stimuli often involve the hypothalamus, which produces releasing and inhibiting hormones that control the secretion of a variety of pituitary hormones.

In addition to these chemical signals, hormones can also be released in response to neural stimuli. A common example of neural stimuli is the activation of the fight-or-flight response by the sympathetic nervous system. When an individual perceives danger, sympathetic neurons signal the adrenal glands to secrete norepinephrine and epinephrine. The two hormones dilate blood vessels, increase the heart and respiratory rate, and suppress the digestive and immune systems. These responses boost the body’s transport of oxygen to the brain and muscles, thereby improving the body’s ability to fight or flee.

Everyday connections

Bisphenol a and endocrine disruption

You may have heard news reports about the effects of a chemical called bisphenol A (BPA) in various types of food packaging. BPA is used in the manufacturing of hard plastics and epoxy resins. Common food-related items that may contain BPA include the lining of aluminum cans, plastic food-storage containers, drinking cups, as well as baby bottles and “sippy” cups. Other uses of BPA include medical equipment, dental fillings, and the lining of water pipes.

Research suggests that BPA is an endocrine disruptor, meaning that it negatively interferes with the endocrine system, particularly during the prenatal and postnatal development period. In particular, BPA mimics the hormonal effects of estrogens and has the opposite effect—that of androgens. The U.S. Food and Drug Administration (FDA) notes in their statement about BPA safety that although traditional toxicology studies have supported the safety of low levels of exposure to BPA, recent studies using novel approaches to test for subtle effects have led to some concern about the potential effects of BPA on the brain, behavior, and prostate gland in fetuses, infants, and young children. The FDA is currently facilitating decreased use of BPA in food-related materials. Many US companies have voluntarily removed BPA from baby bottles, “sippy” cups, and the linings of infant formula cans, and most plastic reusable water bottles sold today boast that they are “BPA free.” In contrast, both Canada and the European Union have completely banned the use of BPA in baby products.

The potential harmful effects of BPA have been studied in both animal models and humans and include a large variety of health effects, such as developmental delay and disease. For example, prenatal exposure to BPA during the first trimester of human pregnancy may be associated with wheezing and aggressive behavior during childhood. Adults exposed to high levels of BPA may experience altered thyroid signaling and male sexual dysfunction. BPA exposure during the prenatal or postnatal period of development in animal models has been observed to cause neurological delays, changes in brain structure and function, sexual dysfunction, asthma, and increased risk for multiple cancers. In vitro studies have also shown that BPA exposure causes molecular changes that initiate the development of cancers of the breast, prostate, and brain. Although these studies have implicated BPA in numerous ill health effects, some experts caution that some of these studies may be flawed and that more research needs to be done. In the meantime, the FDA recommends that consumers take precautions to limit their exposure to BPA. In addition to purchasing foods in packaging free of BPA, consumers should avoid carrying or storing foods or liquids in bottles with the recycling code 3 or 7. Foods and liquids should not be microwave-heated in any form of plastic: use paper, glass, or ceramics instead.

Chapter review

Hormones are derived from amino acids or lipids. Amine hormones originate from the amino acids tryptophan or tyrosine. Larger amino acid hormones include peptides and protein hormones. Steroid hormones are derived from cholesterol.

Steroid hormones and thyroid hormone are lipid soluble. All other amino acid–derived hormones are water soluble. Hydrophobic hormones are able to diffuse through the membrane and interact with an intracellular receptor. In contrast, hydrophilic hormones must interact with cell membrane receptors. These are typically associated with a G protein, which becomes activated when the hormone binds the receptor. This initiates a signaling cascade that involves a second messenger, such as cyclic adenosine monophosphate (cAMP). Second messenger systems greatly amplify the hormone signal, creating a broader, more efficient, and faster response.

Hormones are released upon stimulation that is of either chemical or neural origin. Regulation of hormone release is primarily achieved through negative feedback. Various stimuli may cause the release of hormones, but there are three major types. Humoral stimuli are changes in ion or nutrient levels in the blood. Hormonal stimuli are changes in hormone levels that initiate or inhibit the secretion of another hormone. Finally, a neural stimulus occurs when a nerve impulse prompts the secretion or inhibition of a hormone.

Questions & Answers

Card 5 / 12: For whom would an appreciation of the structural characteristics of the human heart come more easily: an alien who lands on Earth, abducts a human, and dissects his heart, or an anatomy and physiology student performing a dissection of the heart on her very first day of class? Why?
Gelowe Reply
what are regular shaped cells with granules in the cytoplasam
Kabita Reply
PMNL
Dinu
I need sylubuss of clinical officers book
Omary Reply
cholesterol normal value is
BISWANATH Reply
less than 200mg/dl
Ashis
100 to159mg/dL
Dinu
Early this wk. I had some "A & P" questions & answers unfortunately didn't save them, Is there any way I can have them back ,so as 2 save them?. Thnx.
Kechi
what are the functions of the female reproductive system
Lister Reply
it produces the female egg necessary for reproduction, called the Ova or Oocytes. The system is designed to transport the Ova to the site of fertilization.
Kechi
Female reproductive system was mainly functioned to produce ova(ovum) (female eggs) Into which will be fertilized by male gamete to produce zygote
Omary
absolutely right
nimco
wa qalad nimco rage iska hubi
Khaliil
waxwalba ka fikirbay ubaahantahay
Ahmed
ha wayo jawabtoda wa qabyo nimco wey ku raacdat
Khaliil
ha wayo jawabtoda wa qabyo nimco wey ku raacday
Khaliil
wxayaabaha qaarkood waaa in aan u feejignaano
Ahmed
asc if I try female reproductive system has two function the first is to produce egg cell and the second is to protact and nourish the offspring until birth
Muriidi
what is stercobilinogen
Hancerich Reply
fecal urobilinogen. Created by bacteria in the gut. a chemical that gives feces brown color.
Blayne
next question pls.
Kechi
The rate of diffusion increases if the
stella
What's the answer?
Kechi
it's a breaking down of haemoglobin and it's a chemical made by bacteria
Dev
Thnx Dev Raj.
Kechi
yup so any more
Dev
yes I sure do need more "Questions" & "Answers". I'm learning whole lot. Thnx.
Kechi
what is the greatest muscle of the body
Lungu Reply
gluteus maximus
ABDULLAH
pls!!! more "A&P" questions & answers. Thnx.
Kechi
Gluteus maximus
THE
Describe anatomy of cardiovascular system?
cardiovascular system is a group of organs coming together to perform the circulation of blood. The organs invoked are the heart and the blood vessels with blood being the tissue. The heart is a pump and it pumps oxygenated blood through the systemic circuit and deoxygenated blood through the pulmon
bernard
pulmonary circuit.
bernard
more A&P questions pls. Thnx.
Kechi
If an ANOVA yields a significant F value, you could rely on ________ to test significant differences between group means.
Dane Reply
what's ANOVA
Cassandra
analysis of variance
Blayne
plz what you mean with "ANOVA" first
Fatima
anova means analysis of variance, a statistical method in which the variation in a set of observations is divided into distinct components.
Blayne
M value ot test
ABDULLAH
What does it mean by M value ot test?
Orpha
formation of red blood cells
Biketi Reply
explain why... lower back pain in ovarian cancer
Srijoni Reply
we says that protoplasm is the living part of us How?
Muzamil Reply
is the leaving part of our cellular structure.
Eric
it is the leaving part of our blood cellular structure also
ABDULLAH
what is receptor?
Preity Reply
an organ or cell able to respond to light, heat, or other external stimulus and transmit a signal to a sensory nerve.
Jessi
Has anyone taken the first exam?
Sandra
yes
yahye
yes
Allan
hey what is the process after your food is swallowed? how long does it take to get to the stomache until it is released as waste?
Fednise Reply
that is such a broad question. as you begin to swallow its various doses down the alimentary canal that brings the food into your stomach.then depending on whether it's a protein carbohydrate fat that dictates what function takes place in your stomach. these are all steps of digestion.
Joseph
typo sorry it's peristalsis , wave-like projections that push food down your alimentary canal etc. digestion starts in your mouth ends in your large intestines (colon anus)
Joseph
some of the many processes of digestion include hydrolysis dehydration synthesis denaturation of proteins etc. you have to be more specific.
Joseph
there's many different contributing factors the how long it takes food to convert into waste. remember fats, triglycerides proteins and carbohydrates all breakdown two different monomers and structures. you should be looking up metabolic processes.
Joseph
depending how much fiber you have in your diet dictates how much water is brought to your intestines that has to do with excretion whether fiber is insoluble or soluble. this is an anatomy and physiology app. to simply say the stomach will empty its contents in 2 to 3 hours would do you a disservice
Joseph
can the study of anatomy relate to medical technologies
Lean Reply
yes
Khh
absolutely
Jessi
yes...
Sherif
how can I understand micro biology and anatomy better.
Cassandra
yes
Kevin
someone to help me understand glycogeneogenesis
abel
what are the major branches of the aorta?
Kevin
look youtube video
Jessi

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask