<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the types of skeletal muscle fibers
  • Explain fast and slow muscle fibers

Two criteria to consider when classifying the types of muscle fibers are how fast some fibers contract relative to others, and how fibers produce ATP. Using these criteria, there are three main types of skeletal muscle fibers. Slow oxidative (SO) fibers contract relatively slowly and use aerobic respiration (oxygen and glucose) to produce ATP. Fast oxidative (FO) fibers have fast contractions and primarily use aerobic respiration, but because they may switch to anaerobic respiration (glycolysis), can fatigue more quickly than SO fibers. Lastly, fast glycolytic (FG)    fibers have fast contractions and primarily use anaerobic glycolysis. The FG fibers fatigue more quickly than the others. Most skeletal muscles in a human contain(s) all three types, although in varying proportions.

The speed of contraction is dependent on how quickly myosin’s ATPase hydrolyzes ATP to produce cross-bridge action. Fast fibers hydrolyze ATP approximately twice as quickly as slow fibers, resulting in much quicker cross-bridge cycling (which pulls the thin filaments toward the center of the sarcomeres at a faster rate). The primary metabolic pathway used by a muscle fiber determines whether the fiber is classified as oxidative or glycolytic. If a fiber primarily produces ATP through aerobic pathways it is oxidative. More ATP can be produced during each metabolic cycle, making the fiber more resistant to fatigue. Glycolytic fibers primarily create ATP through anaerobic glycolysis, which produces less ATP per cycle. As a result, glycolytic fibers fatigue at a quicker rate.

The oxidative fibers contain many more mitochondria than the glycolytic fibers, because aerobic metabolism, which uses oxygen (O 2 ) in the metabolic pathway, occurs in the mitochondria. The SO fibers possess a large number of mitochondria and are capable of contracting for longer periods because of the large amount of ATP they can produce, but they have a relatively small diameter and do not produce a large amount of tension. SO fibers are extensively supplied with blood capillaries to supply O 2 from the red blood cells in the bloodstream. The SO fibers also possess myoglobin, an O 2 -carrying molecule similar to O 2 -carrying hemoglobin in the red blood cells. The myoglobin stores some of the needed O 2 within the fibers themselves (and gives SO fibers their red color). All of these features allow SO fibers to produce large quantities of ATP, which can sustain muscle activity without fatiguing for long periods of time.

The fact that SO fibers can function for long periods without fatiguing makes them useful in maintaining posture, producing isometric contractions, stabilizing bones and joints, and making small movements that happen often but do not require large amounts of energy. They do not produce high tension, and thus they are not used for powerful, fast movements that require high amounts of energy and rapid cross-bridge cycling.

FO fibers are sometimes called intermediate fibers because they possess characteristics that are intermediate between fast fibers and slow fibers. They produce ATP relatively quickly, more quickly than SO fibers, and thus can produce relatively high amounts of tension. They are oxidative because they produce ATP aerobically, possess high amounts of mitochondria, and do not fatigue quickly. However, FO fibers do not possess significant myoglobin, giving them a lighter color than the red SO fibers. FO fibers are used primarily for movements, such as walking, that require more energy than postural control but less energy than an explosive movement, such as sprinting. FO fibers are useful for this type of movement because they produce more tension than SO fibers but they are more fatigue-resistant than FG fibers.

FG fibers primarily use anaerobic glycolysis as their ATP source. They have a large diameter and possess high amounts of glycogen, which is used in glycolysis to generate ATP quickly to produce high levels of tension. Because they do not primarily use aerobic metabolism, they do not possess substantial numbers of mitochondria or significant amounts of myoglobin and therefore have a white color. FG fibers are used to produce rapid, forceful contractions to make quick, powerful movements. These fibers fatigue quickly, permitting them to only be used for short periods. Most muscles possess a mixture of each fiber type. The predominant fiber type in a muscle is determined by the primary function of the muscle.

Chapter review

ATP provides the energy for muscle contraction. The three mechanisms for ATP regeneration are creatine phosphate, anaerobic glycolysis, and aerobic metabolism. Creatine phosphate provides about the first 15 seconds of ATP at the beginning of muscle contraction. Anaerobic glycolysis produces small amounts of ATP in the absence of oxygen for a short period. Aerobic metabolism utilizes oxygen to produce much more ATP, allowing a muscle to work for longer periods. Muscle fatigue, which has many contributing factors, occurs when muscle can no longer contract. An oxygen debt is created as a result of muscle use. The three types of muscle fiber are slow oxidative (SO), fast oxidative (FO) and fast glycolytic (FG). SO fibers use aerobic metabolism to produce low power contractions over long periods and are slow to fatigue. FO fibers use aerobic metabolism to produce ATP but produce higher tension contractions than SO fibers. FG fibers use anaerobic metabolism to produce powerful, high-tension contractions but fatigue quickly.

Questions & Answers

master gland Kon si h
kajal Reply
Pituitary gland
pituitary gland because it give harmonies and control other gland
glands often secrete hormones which play an important role in maintaining homeostasis.
pituitary gland
pituitary gland is master gland because it present in biran and secrtehormones and play other gland of human body and function its gland so that also called master gland.
pituitary glandis the master gland of our body
how do you study for A&P? lab and lecture?
Aubrey Reply
When one is suffering from motion sickness what area of the brain may trigger emesis?
amy Reply
that is the sign of stroke. if the patient have a stroke. the left side of body is weakness, the affected right of cerebrum but if right side of the body is weakness surely in left side!
thank you sooo much bro
Fatima Reply
Fatima hw a u
any one elaborate fr me foramens of the skull and features which they transmit
icant undrestand plz
zahruuzh Reply
try to read I hop you will understand
state and explain 20 radiology uses
what are chemicals in anatomy and physiology?
Mike Reply
what can I do to find it easy for me in anatomy and physiology course
study up on the basics of the periodic chart, learn bones and muscles attachments, and learn muscles. Those take the longest to memorize. After that it should be a little easier.
what are the two types of body cells
Jennifer Reply
what is malnutrition
malnutrition refers to faulty nutrition resulting from malabsorption,poor diet or overeating. Sometimes too these food do not contain all the six food nutrients in their right proportion.
thank you
Will u be malnourished?
What's the difference between radiology and radiology
Nothing! Radiology it means the study or using of radiation in medical science it can be 1.diagnose or treatment diagnosed radiology! x- ray. ultrasound. ct-scan. mammogram. MRI. 2. treatmen- radiation oncology, like Cobalt 60. and nuclear medicine
what is X-ray?
X-ray is type of light that make it possible to see inside any object. as human body
How the nervous system develops
ayiesher Reply
From the cells at the back of an embryo
breifly explain anatomy of thorax
Hadiza Reply
How many region the rib is divided
how many bon of human being
how to study for the skeletal system
and anatomy
I really need sources immediately
I printed out all the different bones. Put them in the see through protective sheaths and got dry erase markers. I could right on them and erase to help me learn to spell the names of markings and bones.
Or go to a book store, Barnes and Noble(doesn't have to be this) and they have coloring books for anatomy. $16. Really helpful.
okay thanks and are what study tools you use to study the materials and get a better understanding
*what are
I prefer diagrams, pictures that lay out each step with the information in each step. For Example: how action potential creates muscles to move. A pictured diagram gives me a better understanding of how each piece plays a role in each step of the process.
Also for basics, such as memorizing vocab. Flash cards are great. Don't become discouraged if you don't get them all right the first times through. The more you go through them, your brain will remember pieces of information from each and help you to pull out the information 😉
okay thanks
what is the functions of the lips in human
Momboi Reply
could I say sensation?
for protection
Lips assist in speech and eating
Too many easy questions. Which bones are the axial and appendicular? What are the abbreviations for TEE, TTE, AED, A-Mode, B-Mode, and LTH? What is the difference between hypothalamus and thalamus? Where is the parathyroid located? How many True Ribs do we have?
Sovilace Reply
Transesophageal echocardiography Transthoracic Echocardiography automated external defibrillator brightnees mode Los Hermanos Taverna
what is anatomy
okello Reply
anatomy is scientific study of body structures and how they relate to each other
Are there other functions of the nucleolus apart from synthesis of RNA and formation of ribosomes
Peninah Reply
plays a role in cell response to stress
what is angle of auscultation
Bryan Reply

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?