<< Chapter < Page Chapter >> Page >

A quantity y varies inversely with the square of x . If y = 8 when x = 3 , find y when x is 4.

9 2

Got questions? Get instant answers now!

Solving problems involving joint variation

Many situations are more complicated than a basic direct variation or inverse variation model. One variable often depends on multiple other variables. When a variable is dependent on the product or quotient of two or more variables, this is called joint variation    . For example, the cost of busing students for each school trip varies with the number of students attending and the distance from the school. The variable c , cost, varies jointly with the number of students, n , and the distance, d .

Joint variation

Joint variation occurs when a variable varies directly or inversely with multiple variables.

For instance, if x varies directly with both y and z , we have x = k y z . If x varies directly with y and inversely with z , we have x = k y z . Notice that we only use one constant in a joint variation equation.

Solving problems involving joint variation

A quantity x varies directly with the square of y and inversely with the cube root of z . If x = 6 when y = 2 and z = 8 , find x when y = 1 and z = 27.

Begin by writing an equation to show the relationship between the variables.

x = k y 2 z 3

Substitute x = 6 , y = 2 , and z = 8 to find the value of the constant k .

6 = k 2 2 8 3 6 = 4 k 2 3 = k

Now we can substitute the value of the constant into the equation for the relationship.

x = 3 y 2 z 3

To find x when y = 1 and z = 27 , we will substitute values for y and z into our equation.

x = 3 ( 1 ) 2 27 3 = 1
Got questions? Get instant answers now!
Got questions? Get instant answers now!

A quantity x varies directly with the square of y and inversely with z . If x = 40 when y = 4 and z = 2 , find x when y = 10 and z = 25.

x = 20

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with direct and inverse variation.

Visit this website for additional practice questions from Learningpod.

Key equations

Direct variation y = k x n , k  is a nonzero constant .
Inverse variation y = k x n , k  is a nonzero constant .

Key concepts

  • A relationship where one quantity is a constant multiplied by another quantity is called direct variation. See [link] .
  • Two variables that are directly proportional to one another will have a constant ratio.
  • A relationship where one quantity is a constant divided by another quantity is called inverse variation. See [link] .
  • Two variables that are inversely proportional to one another will have a constant multiple. See [link] .
  • In many problems, a variable varies directly or inversely with multiple variables. We call this type of relationship joint variation. See [link] .

Section exercises

Verbal

What is true of the appearance of graphs that reflect a direct variation between two variables?

The graph will have the appearance of a power function.

Got questions? Get instant answers now!

If two variables vary inversely, what will an equation representing their relationship look like?

Got questions? Get instant answers now!

Is there a limit to the number of variables that can vary jointly? Explain.

No. Multiple variables may jointly vary.

Got questions? Get instant answers now!

Algebraic

For the following exercises, write an equation describing the relationship of the given variables.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask