<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Solve direct variation problems.
  • Solve inverse variation problems.
  • Solve problems involving joint variation.

A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers 16% commission on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600, she will earn $736. She wants to evaluate the offer, but she is not sure how. In this section, we will look at relationships, such as this one, between earnings, sales, and commission rate.

Solving direct variation problems

In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula e = 0.16 s tells us her earnings, e , come from the product of 0.16, her commission, and the sale price of the vehicle. If we create a table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. See [link] .

s , sales price e = 0.16 s Interpretation
$4,600 e = 0.16 ( 4,600 ) = 736 A sale of a $4,600 vehicle results in $736 earnings.
$9,200 e = 0.16 ( 9,200 ) = 1,472 A sale of a $9,200 vehicle results in $1472 earnings.
$18,400 e = 0.16 ( 18,400 ) = 2,944 A sale of a $18,400 vehicle results in $2944 earnings.

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is called direct variation . Each variable in this type of relationship varies directly with the other.

[link] represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the car. The formula y = k x n is used for direct variation. The value k is a nonzero constant greater than zero and is called the constant of variation . In this case, k = 0.16 and n = 1. We saw functions like this one when we discussed power functions.

Graph of y=(0.16)x where the horizontal axis is labeled, “s, Sales Price in Dollars”, and the vertical axis is labeled, “e, Earnings, $”.

Direct variation

If x and y are related by an equation of the form

y = k x n

then we say that the relationship is direct variation    and y varies directly    with, or is proportional to, the n th power of x . In direct variation relationships, there is a nonzero constant ratio k = y x n , where k is called the constant of variation    , which help defines the relationship between the variables.

Given a description of a direct variation problem, solve for an unknown.

  1. Identify the input, x , and the output, y .
  2. Determine the constant of variation. You may need to divide y by the specified power of x to determine the constant of variation.
  3. Use the constant of variation to write an equation for the relationship.
  4. Substitute known values into the equation to find the unknown.

Solving a direct variation problem

The quantity y varies directly with the cube of x . If y = 25 when x = 2 , find y when x is 6.

The general formula for direct variation with a cube is y = k x 3 . The constant can be found by dividing y by the cube of x .

k = y x 3 = 25 2 3 = 25 8

Now use the constant to write an equation that represents this relationship.

y = 25 8 x 3

Substitute x = 6 and solve for y .

y = 25 8 ( 6 ) 3 = 675
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Eseka
Please prove it
Eseka
hi
Joel
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
Nando
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
SANDESH Reply
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask