<< Chapter < Page Chapter >> Page >

The cotangent graph has vertical asymptotes at each value of x where tan x = 0 ; we show these in the graph below with dashed lines. Since the cotangent is the reciprocal of the tangent, cot x has vertical asymptotes at all values of x where tan x = 0 , and cot x = 0 at all values of x where tan x has its vertical asymptotes.

A graph of cotangent of x, with vertical asymptotes at multiples of pi.
The cotangent function

Features of the graph of y = A Cot( Bx )

  • The stretching factor is | A | .
  • The period is P = π | B | .
  • The domain is x π | B | k , where k is an integer.
  • The range is ( , ) .
  • The asymptotes occur at x = π | B | k , where k is an integer.
  • y = A cot ( B x ) is an odd function.

Graphing variations of y = cot x

We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes the following.

y = A cot ( B x C ) + D

Properties of the graph of y = A Cot( Bx −c)+ D

  • The stretching factor is | A | .
  • The period is π | B | .
  • The domain is x C B + π | B | k , where k is an integer.
  • The range is ( −∞ , ) .
  • The vertical asymptotes occur at x = C B + π | B | k , where k is an integer.
  • There is no amplitude.
  • y = A cot ( B x ) is an odd function because it is the quotient of even and odd functions (cosine and sine, respectively)

Given a modified cotangent function of the form f ( x ) = A cot ( B x ) , graph one period.

  1. Express the function in the form f ( x ) = A cot ( B x ) .
  2. Identify the stretching factor, | A | .
  3. Identify the period, P = π | B | .
  4. Draw the graph of y = A tan ( B x ) .
  5. Plot any two reference points.
  6. Use the reciprocal relationship between tangent and cotangent to draw the graph of y = A cot ( B x ) .
  7. Sketch the asymptotes.

Graphing variations of the cotangent function

Determine the stretching factor, period, and phase shift of y = 3 cot ( 4 x ) , and then sketch a graph.

  • Step 1. Expressing the function in the form f ( x ) = A cot ( B x ) gives f ( x ) = 3 cot ( 4 x ) .
  • Step 2. The stretching factor is | A | = 3.
  • Step 3. The period is P = π 4 .
  • Step 4. Sketch the graph of y = 3 tan ( 4 x ) .
  • Step 5. Plot two reference points. Two such points are ( π 16 , 3 ) and ( 3 π 16 , −3 ) .
  • Step 6. Use the reciprocal relationship to draw y = 3 cot ( 4 x ) .
  • Step 7. Sketch the asymptotes, x = 0 , x = π 4 .

The orange graph in [link] shows y = 3 tan ( 4 x ) and the blue graph shows y = 3 cot ( 4 x ) .

A graph of two periods of a modified tangent function and a modified cotangent function. Vertical asymptotes at x=-pi/4 and pi/4.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given a modified cotangent function of the form f ( x ) = A cot ( B x C ) + D , graph one period.

  1. Express the function in the form f ( x ) = A cot ( B x C ) + D .
  2. Identify the stretching factor, | A | .
  3. Identify the period, P = π | B | .
  4. Identify the phase shift, C B .
  5. Draw the graph of y = A tan ( B x ) shifted to the right by C B and up by D .
  6. Sketch the asymptotes x = C B + π | B | k , where k is an integer.
  7. Plot any three reference points and draw the graph through these points.

Graphing a modified cotangent

Sketch a graph of one period of the function f ( x ) = 4 cot ( π 8 x π 2 ) 2.

  • Step 1. The function is already written in the general form f ( x ) = A cot ( B x C ) + D .
  • Step 2. A = 4 , so the stretching factor is 4.
  • Step 3. B = π 8 , so the period is P = π | B | = π π 8 = 8.
  • Step 4. C = π 2 , so the phase shift is C B = π 2 π 8 = 4.
  • Step 5. We draw f ( x ) = 4 tan ( π 8 x π 2 ) 2.
  • Step 6-7. Three points we can use to guide the graph are ( 6 , 2 ) , ( 8 , 2 ) , and ( 10 , 6 ) . We use the reciprocal relationship of tangent and cotangent to draw f ( x ) = 4 cot ( π 8 x π 2 ) 2.
  • Step 8. The vertical asymptotes are x = 4 and x = 12.

The graph is shown in [link] .

A graph of one period of a modified cotangent function. Vertical asymptotes at x=4 and x=12.
One period of a modified cotangent function
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
the polar co-ordinate of the point (-1, -1)
Sumit Reply
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
Rockstar Reply
tanh`(x-iy) =A+iB, find A and B
Pankaj Reply
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
Branded Reply
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
archana Reply
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask