<< Chapter < Page Chapter >> Page >
In this section students will:
  • Evaluate square roots.
  • Use the product rule to simplify square roots.
  • Use the quotient rule to simplify square roots.
  • Add and subtract square roots.
  • Rationalize denominators.
  • Use rational roots.

A hardware store sells 16-ft ladders and 24-ft ladders. A window is located 12 feet above the ground. A ladder needs to be purchased that will reach the window from a point on the ground 5 feet from the building. To find out the length of ladder needed, we can draw a right triangle as shown in [link] , and use the Pythagorean Theorem.

A right triangle with a base of 5 feet, a height of 12 feet, and a hypotenuse labeled c
a 2 + b 2 = c 2 5 2 + 12 2 = c 2 169 = c 2

Now, we need to find out the length that, when squared, is 169, to determine which ladder to choose. In other words, we need to find a square root. In this section, we will investigate methods of finding solutions to problems such as this one.

Evaluating square roots

When the square root of a number is squared, the result is the original number. Since 4 2 = 16 , the square root of 16 is 4. The square root function is the inverse of the squaring function just as subtraction is the inverse of addition. To undo squaring, we take the square root.

In general terms, if a is a positive real number, then the square root of a is a number that, when multiplied by itself, gives a . The square root could be positive or negative because multiplying two negative numbers gives a positive number. The principal square root    is the nonnegative number that when multiplied by itself equals a . The square root obtained using a calculator is the principal square root.

The principal square root of a is written as a . The symbol is called a radical    , the term under the symbol is called the radicand    , and the entire expression is called a radical expression    .

The expression: square root of twenty-five is enclosed in a circle. The circle has an arrow pointing to it labeled: Radical expression. The square root symbol has an arrow pointing to it labeled: Radical. The number twenty-five has an arrow pointing to it labeled: Radicand.

Principal square root

The principal square root    of a is the nonnegative number that, when multiplied by itself, equals a . It is written as a radical expression     , with a symbol called a radical    over the term called the radicand    : a .

Does 25 = ± 5 ?

No. Although both 5 2 and ( −5 ) 2 are 25 , the radical symbol implies only a nonnegative root, the principal square root. The principal square root of 25 is 25 = 5.

Evaluating square roots

Evaluate each expression.

  1. 100
  2. 16
  3. 25 + 144
  4. 49 81
  1. 100 = 10 because 10 2 = 100
  2. 16 = 4 = 2 because 4 2 = 16 and 2 2 = 4
  3. 25 + 144 = 169 = 13 because 13 2 = 169
  4. 49 81 = 7 9 = −2 because 7 2 = 49 and 9 2 = 81
Got questions? Get instant answers now!
Got questions? Get instant answers now!

For 25 + 144 , can we find the square roots before adding?

No. 25 + 144 = 5 + 12 = 17. This is not equivalent to 25 + 144 = 13. The order of operations requires us to add the terms in the radicand before finding the square root.

Evaluate each expression.

  1. 225
  2. 81
  3. 25 9
  4. 36 + 121
  1. 15
  2. 3
  3. 4
  4. 17
Got questions? Get instant answers now!

Using the product rule to simplify square roots

To simplify a square root, we rewrite it such that there are no perfect squares in the radicand. There are several properties of square roots that allow us to simplify complicated radical expressions. The first rule we will look at is the product rule for simplifying square roots, which allows us to separate the square root of a product of two numbers into the product of two separate rational expressions. For instance, we can rewrite 15 as 3 5 . We can also use the product rule to express the product of multiple radical expressions as a single radical expression.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask