<< Chapter < Page Chapter >> Page >
In this section students will:
  • Use the product rule of exponents.
  • Use the quotient rule of exponents.
  • Use the power rule of exponents.
  • Use the zero exponent rule of exponents.
  • Use the negative rule of exponents.
  • Find the power of a product and a quotient.
  • Simplify exponential expressions.
  • Use scientific notation.

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per frame, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information used to film a one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter 2,048 × 1,536 × 48 × 24 × 3,600 and press ENTER. The calculator displays 1.304596316E13. What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of approximately 1.3 × 10 13 bits of data in that one-hour film. In this section, we review rules of exponents first and then apply them to calculations involving very large or small numbers.

Using the product rule of exponents

Consider the product x 3 x 4 . Both terms have the same base, x , but they are raised to different exponents. Expand each expression, and then rewrite the resulting expression.

x 3 x 4 = x x x 3  factors x x x x 4  factors = x x x x x x x 7  factors = x 7

The result is that x 3 x 4 = x 3 + 4 = x 7 .

Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying exponential expressions with the same base, we write the result with the common base and add the exponents. This is the product rule of exponents.

a m a n = a m + n

Now consider an example with real numbers.

2 3 2 4 = 2 3 + 4 = 2 7

We can always check that this is true by simplifying each exponential expression. We find that 2 3 is 8, 2 4 is 16, and 2 7 is 128. The product 8 16 equals 128, so the relationship is true. We can use the product rule of exponents to simplify expressions that are a product of two numbers or expressions with the same base but different exponents.

The product rule of exponents

For any real number a and natural numbers m and n , the product rule of exponents states that

a m a n = a m + n

Using the product rule

Write each of the following products with a single base. Do not simplify further.

  1. t 5 t 3
  2. ( −3 ) 5 ( −3 )
  3. x 2 x 5 x 3

Use the product rule to simplify each expression.

  1. t 5 t 3 = t 5 + 3 = t 8
  2. ( −3 ) 5 ( −3 ) = ( −3 ) 5 ( −3 ) 1 = ( −3 ) 5 + 1 = ( −3 ) 6
  3. x 2 x 5 x 3

At first, it may appear that we cannot simplify a product of three factors. However, using the associative property of multiplication, begin by simplifying the first two.

x 2 x 5 x 3 = ( x 2 x 5 ) x 3 = ( x 2 + 5 ) x 3 = x 7 x 3 = x 7 + 3 = x 10

Notice we get the same result by adding the three exponents in one step.

x 2 x 5 x 3 = x 2 + 5 + 3 = x 10
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
circular region of radious
Kainat Reply
how can we solve this problem
Joel Reply
Sin(A+B) = sinBcosA+cosBsinA
Eseka Reply
Prove it
Please prove it
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
Arleathia Reply
7.5 and 37.5
find the sum of 28th term of the AP 3+10+17+---------
Prince Reply
I think you should say "28 terms" instead of "28th term"
the 28th term is 175
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n
write down the polynomial function with root 1/3,2,-3 with solution
Gift Reply
if A and B are subspaces of V prove that (A+B)/B=A/(A-B)
Pream Reply
write down the value of each of the following in surd form a)cos(-65°) b)sin(-180°)c)tan(225°)d)tan(135°)
Oroke Reply
Prove that (sinA/1-cosA - 1-cosA/sinA) (cosA/1-sinA - 1-sinA/cosA) = 4
kiruba Reply
what is the answer to dividing negative index
Morosi Reply
In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
Shivam Reply
give me the waec 2019 questions
Aaron Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?