<< Chapter < Page Chapter >> Page >
log b ( 6 x y ) = log b ( 6 x ) log b y = log b 6 + log b x log b y

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

log b ( A C ) = log b ( A C 1 ) = log b ( A ) + log b ( C 1 ) = log b A + ( 1 ) log b C = log b A log b C

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember, however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside the argument of the logarithm.

Expanding logarithms using product, quotient, and power rules

Rewrite ln ( x 4 y 7 ) as a sum or difference of logs.

First, because we have a quotient of two expressions, we can use the quotient rule:

ln ( x 4 y 7 ) = ln ( x 4 y ) ln ( 7 )

Then seeing the product in the first term, we use the product rule:

ln ( x 4 y ) ln ( 7 ) = ln ( x 4 ) + ln ( y ) ln ( 7 )

Finally, we use the power rule on the first term:

ln ( x 4 ) + ln ( y ) ln ( 7 ) = 4 ln ( x ) + ln ( y ) ln ( 7 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand log ( x 2 y 3 z 4 ) .

2 log x + 3 log y 4 log z

Got questions? Get instant answers now!

Using the power rule for logarithms to simplify the logarithm of a radical expression

Expand log ( x ) .

log ( x ) = log x ( 1 2 ) = 1 2 log x
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand ln ( x 2 3 ) .

2 3 ln x

Got questions? Get instant answers now!

Can we expand ln ( x 2 + y 2 ) ?

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Expanding complex logarithmic expressions

Expand log 6 ( 64 x 3 ( 4 x + 1 ) ( 2 x 1 ) ) .

We can expand by applying the Product and Quotient Rules.

log 6 ( 64 x 3 ( 4 x + 1 ) ( 2 x 1 ) ) = log 6 64 + log 6 x 3 + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Apply the Quotient Rule . = log 6 2 6 + log 6 x 3 + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Simplify by writing  64 as 2 6 . = 6 log 6 2 + 3 log 6 x + log 6 ( 4 x + 1 ) log 6 ( 2 x 1 ) Apply the Power Rule .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Expand ln ( ( x 1 ) ( 2 x + 1 ) 2 ( x 2 9 ) ) .

1 2 ln ( x 1 ) + ln ( 2 x + 1 ) ln ( x + 3 ) ln ( x 3 )

Got questions? Get instant answers now!

Condensing logarithmic expressions

We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will learn later how to change the base of any logarithm before condensing.

Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a single logarithm.

  1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power.
  2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
  3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

Using the product and quotient rules to combine logarithms

Write log 3 ( 5 ) + log 3 ( 8 ) log 3 ( 2 ) as a single logarithm.

Using the product and quotient rules

log 3 ( 5 ) + log 3 ( 8 ) = log 3 ( 5 8 ) = log 3 ( 40 )

This reduces our original expression to

log 3 ( 40 ) log 3 ( 2 )

Then, using the quotient rule

log 3 ( 40 ) log 3 ( 2 ) = log 3 ( 40 2 ) = log 3 ( 20 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Condense log 3 log 4 + log 5 log 6.

log ( 3 5 4 6 ) ; can also be written log ( 5 8 ) by reducing the fraction to lowest terms.

Got questions? Get instant answers now!

Questions & Answers

x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
HERVE Reply
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
Oliver Reply
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
Kwesi Reply
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
Martina Reply
factoring polynomial
Noven Reply
what's your topic about?
Shin Reply
find general solution of the Tanx=-1/root3,secx=2/root3
Nani Reply
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
Sanjay Reply
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
duru Reply
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
Koru Reply
where can I get indices
Kojo Reply
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
about complex fraction
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
Leizel Reply
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Deadra Reply
Need help with this question please
Deadra
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
Kaitlyn Reply
The sequence is {1,-1,1-1.....} has
amit Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask