<< Chapter < Page Chapter >> Page >

Using sum and difference formulas for cofunctions

Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them to do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two positive angles is π 2 , those two angles are complements, and the sum of the two acute angles in a right triangle is π 2 , so they are also complements. In [link] , notice that if one of the acute angles is labeled as θ , then the other acute angle must be labeled ( π 2 θ ) .

Notice also that sin θ = cos ( π 2 θ ) : opposite over hypotenuse. Thus, when two angles are complimentary, we can say that the sine of θ equals the cofunction of the complement of θ . Similarly, tangent and cotangent are cofunctions, and secant and cosecant are cofunctions.

Image of a right triangle. The remaining angles are labeled theta and pi/2 - theta.

From these relationships, the cofunction identities are formed.

Cofunction identities

The cofunction identities are summarized in [link] .

sin θ = cos ( π 2 θ ) cos θ = sin ( π 2 θ )
tan θ = cot ( π 2 θ ) cot θ = tan ( π 2 θ )
sec θ = csc ( π 2 θ ) csc θ = sec ( π 2 θ )

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas. For example, using

cos ( α β ) = cos α cos β + sin α sin β ,

we can write

cos ( π 2 θ ) = cos π 2 cos θ + sin π 2 sin θ                   = ( 0 ) cos θ + ( 1 ) sin θ                   = sin θ

Finding a cofunction with the same value as the given expression

Write tan π 9 in terms of its cofunction.

The cofunction of tan θ = cot ( π 2 θ ) . Thus,

tan ( π 9 ) = cot ( π 2 π 9 )            = cot ( 9 π 18 2 π 18 )            = cot ( 7 π 18 )
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Write sin π 7 in terms of its cofunction.

cos ( 5 π 14 )

Got questions? Get instant answers now!

Using the sum and difference formulas to verify identities

Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very familiar with the identities or to have a list of them accessible while working the problems. Reviewing the general rules from Solving Trigonometric Equations with Identities may help simplify the process of verifying an identity.

Given an identity, verify using sum and difference formulas.

  1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression until it matches the other side of the equal sign. Occasionally, we might have to alter both sides, but working on only one side is the most efficient.
  2. Look for opportunities to use the sum and difference formulas.
  3. Rewrite sums or differences of quotients as single quotients.
  4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.

Verifying an identity involving sine

Verify the identity sin ( α + β ) + sin ( α β ) = 2 sin α cos β .

We see that the left side of the equation includes the sines of the sum and the difference of angles.

sin ( α + β ) = sin α cos β + cos α sin β sin ( α β ) = sin α cos β cos α sin β

We can rewrite each using the sum and difference formulas.

sin ( α + β ) + sin ( α β ) = sin α cos β + cos α sin β + sin α cos β cos α sin β                                       = 2 sin α cos β

We see that the identity is verified.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Verifying an identity involving tangent

Verify the following identity.

sin ( α β ) cos α cos β = tan α tan β

We can begin by rewriting the numerator on the left side of the equation.

sin ( α β ) cos α cos β = sin α cos β cos α sin β cos α cos β                   = sin α cos β cos α cos β cos α sin β cos α cos β Rewrite using a common denominator .                   = sin α cos α sin β cos β Cancel .                   = tan α tan β Rewrite in terms of tangent .

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished by writing the tangent in terms of sine and cosine.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

for the "hiking" mix, there are 1,000 pieces in the mix, containing 390.8 g of fat, and 165 g of protein. if there is the same amount of almonds as cashews, how many of each item is in the trail mix?
ADNAN Reply
linear speed of an object
Melissa Reply
an object is traveling around a circle with a radius of 13 meters .if in 20 seconds a central angle of 1/7 Radian is swept out what are the linear and angular speed of the object
Melissa
test
Matrix
how to find domain
Mohamed Reply
like this: (2)/(2-x) the aim is to see what will not be compatible with this rational expression. If x= 0 then the fraction is undefined since we cannot divide by zero. Therefore, the domain consist of all real numbers except 2.
Dan
define the term of domain
Moha
if a>0 then the graph is concave
Angel Reply
if a<0 then the graph is concave blank
Angel
what's a domain
Kamogelo Reply
The set of all values you can use as input into a function su h that the output each time will be defined, meaningful and real.
Spiro
how fast can i understand functions without much difficulty
Joe Reply
what is inequalities
Nathaniel
functions can be understood without a lot of difficulty. Observe the following: f(2) 2x - x 2(2)-2= 2 now observe this: (2,f(2)) ( 2, -2) 2(-x)+2 = -2 -4+2=-2
Dan
what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
158.5 This number can be developed by using algebra and logarithms. Begin by moving log(2) to the right hand side of the equation like this: t/100 log(2)= log(3) step 1: divide each side by log(2) t/100=1.58496250072 step 2: multiply each side by 100 to isolate t. t=158.49
Dan
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
ismail
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
how to find x: 12x = 144 notice how 12 is being multiplied by x. Therefore division is needed to isolate x and whatever we do to one side of the equation we must do to the other. That develops this: x= 144/12 divide 144 by 12 to get x. addition: 12+x= 14 subtract 12 by each side. x =2
Dan
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask