<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Solve for the centripetal acceleration of an object moving on a circular path.
  • Use the equations of circular motion to find the position, velocity, and acceleration of a particle executing circular motion.
  • Explain the differences between centripetal acceleration and tangential acceleration resulting from nonuniform circular motion.
  • Evaluate centripetal and tangential acceleration in nonuniform circular motion, and find the total acceleration vector.

Uniform circular motion is a specific type of motion in which an object travels in a circle with a constant speed. For example, any point on a propeller spinning at a constant rate is executing uniform circular motion. Other examples are the second, minute, and hour hands of a watch. It is remarkable that points on these rotating objects are actually accelerating, although the rotation rate is a constant. To see this, we must analyze the motion in terms of vectors.

Centripetal acceleration

In one-dimensional kinematics, objects with a constant speed have zero acceleration. However, in two- and three-dimensional kinematics, even if the speed is a constant, a particle can have acceleration if it moves along a curved trajectory such as a circle. In this case the velocity vector is changing, or d v / d t 0 . This is shown in [link] . As the particle moves counterclockwise in time Δ t on the circular path, its position vector moves from r ( t ) to r ( t + Δ t ) . The velocity vector has constant magnitude and is tangent to the path as it changes from v ( t ) to v ( t + Δ t ) , changing its direction only. Since the velocity vector v ( t ) is perpendicular to the position vector r ( t ) , the triangles formed by the position vectors and Δ r , and the velocity vectors and Δ v are similar. Furthermore, since | r ( t ) | = | r ( t + Δ t ) | and | v ( t ) | = | v ( t + Δ t ) | , the two triangles are isosceles. From these facts we can make the assertion

Δ v v = Δ r r or Δ v = v r Δ r .

Figure a shows a circle with center at point C. We are shown radius r of t and radius r of t, which are an angle Delta theta apart, and the chord length delta r connecting the ends of the two radii. Vectors r of t, r of t plus delta t, and delta r form a triangle. At the tip of vector r of t, the velocity is shown as v of t and points up and to the right, tangent to the circle. . At the tip of vector r of t plus delta t, the velocity is shown as v of t plus delta t and points up and to the left, tangent to the circle. Figure b shows the vectors v of t and v of t plus delta t with their tails together, and the vector delta v from the tip of v of t to the tip of v of t plus delta t. These three vectors form a triangle. The angle between the v of t and v of t plus delta t is theta.
(a) A particle is moving in a circle at a constant speed, with position and velocity vectors at times t and t + Δ t . (b) Velocity vectors forming a triangle. The two triangles in the figure are similar. The vector Δ v points toward the center of the circle in the limit Δ t 0 .

We can find the magnitude of the acceleration from

a = lim Δ t 0 ( Δ v Δ t ) = v r ( lim Δ t 0 Δ r Δ t ) = v 2 r .

The direction of the acceleration can also be found by noting that as Δ t and therefore Δ θ approach zero, the vector Δ v approaches a direction perpendicular to v . In the limit Δ t 0 , Δ v is perpendicular to v . Since v is tangent to the circle, the acceleration d v / d t points toward the center of the circle. Summarizing, a particle moving in a circle at a constant speed has an acceleration with magnitude

a C = v 2 r .

The direction of the acceleration vector is toward the center of the circle ( [link] ). This is a radial acceleration and is called the centripetal acceleration    , which is why we give it the subscript c. The word centripetal comes from the Latin words centrum (meaning “center”) and petere (meaning to seek”), and thus takes the meaning “center seeking.”

A circle is shown with a purple arrow labeled as vector a sub c pointing radially inward and a green arrow tangent to the circle and labeled v. The arrows are shown with their tails at the same point on the circle.
The centripetal acceleration vector points toward the center of the circular path of motion and is an acceleration in the radial direction. The velocity vector is also shown and is tangent to the circle.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask