<< Chapter < Page Chapter >> Page >

Units of force

F net = m a size 12{F rSub { size 8{"net"} } =ma} {} is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1 m/s 2 size 12{1" m/s" rSup { size 8{2} } } {} . That is, since F net = m a size 12{F rSub { size 8{"net"} } =ma} {} ,

1 N = 1 kg m/s 2 size 12{"1 N "=" 1 kg" cdot "m/s^2"} {} .

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the pound (lb), where 1 N = 0.225 lb.

Weight and the gravitational force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly called its weight     w size 12{w} {} . Weight can be denoted as a vector w size 12{w} {} because it has a direction; down is, by definition, the direction of gravity, and hence weight is a downward force. The magnitude of weight is denoted as w size 12{w} {} . Galileo was instrumental in showing that, in the absence of air resistance, all objects fall with the same acceleration g size 12{g} {} . Using Galileo’s result and Newton’s second law, we can derive an equation for weight.

Consider an object with mass m size 12{m} {} falling downward toward Earth. It experiences only the downward force of gravity, which has magnitude w size 12{w} {} . Newton’s second law states that the magnitude of the net external force on an object is F net = ma size 12{F rSub { size 8{"net"} } = ital "ma"} {} .

Since the object experiences only the downward force of gravity, F net = w size 12{F rSub { size 8{"net"} } =w} {} . We know that the acceleration of an object due to gravity is g , or a = g size 12{a=g} {} . Substituting these into Newton’s second law gives

Weight

This is the equation for weight —the gravitational force on a mass m size 12{m} {} :

w = mg size 12{w= ital "mg"} {} .

Since g = 9.80 m/s 2 size 12{g=9 "." "80"" m/s" rSup { size 8{2} } } {} on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

w = mg = ( 1 . 0 kg ) ( 9.80 m/s 2 ) = 9.8 N size 12{w= ital "mg"= \( 1 "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) =9 "." 8" N"} {} .

Recall that g size 12{g} {} can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall    . That is, the only force acting on the object is the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is always some upward force from the air acting on the object.

The acceleration due to gravity g size 12{g} {} varies slightly over the surface of Earth, so that the weight of an object depends on location and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example, the acceleration due to gravity is only 1.67 m/s 2 size 12{1 "." "67"" m/s" rSup { size 8{2} } } {} . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large body , such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual weightlessness.

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask