<< Chapter < Page Chapter >> Page >

Collisions

Conservation of energy and momentum often results in energy transfer to a less massive object in a collision. This was discussed in detail in Work, Energy, and Energy Resources , for example.

Different types of radiation have different ranges when compared at the same energy and in the same material. Alphas have the shortest range, betas penetrate farther, and gammas have the greatest range. This is directly related to charge and speed of the particle or type of radiation. At a given energy, each α , β , or γ will produce the same number of ionizations in a material (each ionization requires a certain amount of energy on average). The more readily the particle produces ionization, the more quickly it will lose its energy. The effect of charge is as follows: The α size 12{α} {} has a charge of + 2 q e , the β has a charge of q e size 12{ - 2q rSub { size 8{e} } } {} , and the γ size 12{γ} {} is uncharged. The electromagnetic force exerted by the α size 12{α} {} is thus twice as strong as that exerted by the β size 12{β} {} and it is more likely to produce ionization. Although chargeless, the γ size 12{γ} {} does interact weakly because it is an electromagnetic wave, but it is less likely to produce ionization in any encounter. More quantitatively, the change in momentum Δ p size 12{Δp} {} given to a particle in the material is Δ p = F Δ t , where F size 12{F} {} is the force the α , β , or γ exerts over a time Δ t size 12{Δt} {} . The smaller the charge, the smaller is F size 12{F} {} and the smaller is the momentum (and energy) lost. Since the speed of alphas is about 5% to 10% of the speed of light, classical (non-relativistic) formulas apply.

The speed at which they travel is the other major factor affecting the range of α size 12{α} {} s, β size 12{β} {} s, and γ size 12{γ} {} s. The faster they move, the less time they spend in the vicinity of an atom or a molecule, and the less likely they are to interact. Since α size 12{α} {} s and β size 12{β} {} s are particles with mass (helium nuclei and electrons, respectively), their energy is kinetic, given classically by 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} . The mass of the β size 12{β} {} particle is thousands of times less than that of the α size 12{α} {} s, so that β size 12{β} {} s must travel much faster than α size 12{α} {} s to have the same energy. Since β size 12{β} {} s move faster (most at relativistic speeds), they have less time to interact than α size 12{α} {} s. Gamma rays are photons, which must travel at the speed of light. They are even less likely to interact than a β size 12{β} {} , since they spend even less time near a given atom (and they have no charge). The range of γ size 12{γ} {} s is thus greater than the range of β size 12{β} {} s.

Alpha radiation from radioactive sources has a range much less than a millimeter of biological tissues, usually not enough to even penetrate the dead layers of our skin. On the other hand, the same α radiation can penetrate a few centimeters of air, so mere distance from a source prevents α size 12{α} {} radiation from reaching us. This makes α size 12{α} {} radiation relatively safe for our body compared to β and γ size 12{γ} {} radiation. Typical β radiation can penetrate a few millimeters of tissue or about a meter of air. Beta radiation is thus hazardous even when not ingested. The range of β size 12{β} {} s in lead is about a millimeter, and so it is easy to store β sources in lead radiation-proof containers. Gamma rays have a much greater range than either α size 12{α} {} s or β size 12{β} {} s. In fact, if a given thickness of material, like a lead brick, absorbs 90% of the γ s, then a second lead brick will only absorb 90% of what got through the first. Thus, γ s do not have a well-defined range; we can only cut down the amount that gets through. Typically, γ size 12{γ} {} s can penetrate many meters of air, go right through our bodies, and are effectively shielded (that is, reduced in intensity to acceptable levels) by many centimeters of lead. One benefit of γ size 12{γ} {} s is that they can be used as radioactive tracers (see [link] ).

This figure shows four images of a skeleton of a human. Different parts of the body show bright spots wherever the bone cells are most active, indicating bone cancer.
This image of the concentration of a radioactive tracer in a patient’s body reveals where the most active bone cells are, an indication of bone cancer. A short-lived radioactive substance that locates itself selectively is given to the patient, and the radiation is measured with an external detector. The emitted γ size 12{γ} {} radiation has a sufficient range to leave the body—the range of α size 12{α} {} s and β size 12{β} {} s is too small for them to be observed outside the patient. (credit: Kieran Maher, Wikimedia Commons)

Phet explorations: beta decay

Watch beta decay occur for a collection of nuclei or for an individual nucleus.

Beta Decay

Section summary

  • Some nuclei are radioactive—they spontaneously decay destroying some part of their mass and emitting energetic rays, a process called nuclear radioactivity.
  • Nuclear radiation, like x rays, is ionizing radiation, because energy sufficient to ionize matter is emitted in each decay.
  • The range (or distance traveled in a material) of ionizing radiation is directly related to the charge of the emitted particle and its energy, with greater-charge and lower-energy particles having the shortest ranges.
  • Radiation detectors are based directly or indirectly upon the ionization created by radiation, as are the effects of radiation on living and inert materials.

Conceptual questions

Suppose the range for 5 . 0 MeV α size 12{5 "." "0 MeV" α} {} ray is known to be 2.0 mm in a certain material. Does this mean that every 5 . 0 MeV α size 12{5 "." "0 MeV" α} {} a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.

Got questions? Get instant answers now!

What is the difference between γ size 12{γ} {} rays and characteristic x rays? Is either necessarily more energetic than the other? Which can be the most energetic?

Got questions? Get instant answers now!

Ionizing radiation interacts with matter by scattering from electrons and nuclei in the substance. Based on the law of conservation of momentum and energy, explain why electrons tend to absorb more energy than nuclei in these interactions.

Got questions? Get instant answers now!

What characteristics of radioactivity show it to be nuclear in origin and not atomic?

Got questions? Get instant answers now!

What is the source of the energy emitted in radioactive decay? Identify an earlier conservation law, and describe how it was modified to take such processes into account.

Got questions? Get instant answers now!

Consider [link] . If an electric field is substituted for the magnetic field with positive charge instead of the north pole and negative charge instead of the south pole, in which directions will the α size 12{α} {} , β size 12{β} {} , and γ size 12{γ} {} rays bend?

Got questions? Get instant answers now!

Explain how an α size 12{α} {} particle can have a larger range in air than a β size 12{β} {} particle with the same energy in lead.

Got questions? Get instant answers now!

Arrange the following according to their ability to act as radiation shields, with the best first and worst last. Explain your ordering in terms of how radiation loses its energy in matter.

(a) A solid material with low density composed of low-mass atoms.

(b) A gas composed of high-mass atoms.

(c) A gas composed of low-mass atoms.

(d) A solid with high density composed of high-mass atoms.

Got questions? Get instant answers now!

Often, when people have to work around radioactive materials spills, we see them wearing white coveralls (usually a plastic material). What types of radiation (if any) do you think these suits protect the worker from, and how?

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask