<< Chapter < Page Chapter >> Page >

Using conservation of mechanical energy to calculate the speed of a toy car

A 0.100-kg toy car is propelled by a compressed spring, as shown in [link] . The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of the slope.

The figure shows a toy race car that has just been released from a spring. Two possible paths for the car are shown. One path has a gradual upward incline, leveling off at a height of eighteen centimeters above its starting level. An alternative path shows the car descending from its starting point, making a loop, and then ascending back up and leveling off at a height of eighteen centimeters above its starting level.
A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,

KE i + PE i = KE f + PE f size 12{"KE""" lSub { size 8{i} } +"PE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } } {}

or

1 2 mv i 2 + mgh i + 1 2 kx i 2 = 1 2 mv f 2 + mgh f + 1 2 kx f 2 ,

where h size 12{h} {} is the height (vertical position) and x size 12{x} {} is the compression of the spring. This general statement looks complex but becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both h i size 12{h rSub { size 8{i} } } {} and h f size 12{h rSub { size 8{f} } } {} are zero. Furthermore, the initial speed v i size 12{v rSub { size 8{i} } } {} is zero and the final compression of the spring x f size 12{x rSub { size 8{f} } } {} is zero, and so several terms in the conservation of mechanical energy equation are zero and it simplifies to

1 2 kx i 2 = 1 2 mv f 2 .

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields

v f = k m x i = 250 .0 N/m 0.100 kg ( 0.0400 m ) = 2.00 m/s. alignl { stack { size 12{v rSub { size 8{f} } = sqrt { { {k} over {m} } } x rSub { size 8{i} } } {} #" "= sqrt { { {"250" "." 0" N/m"} over {0 "." "100 kg"} } } \( 0 "." "0400"" m" \) {} # " "=2 "." "00"" m/s" "." {}} } {}

Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes

1 2 kx i  2 = 1  2 mv f  2 + mgh f . size 12{ { {1} over {2} } ital "kx" rSub { size 8{i} rSup { size 8{2} } } = { {1} over {2} } ital "mv" rSub { size 8{f} rSup { size 8{2} } } + ital "mgh" rSub { size 8{f} } } {}

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for v f size 12{v rSub { size 8{f} } } {} and substituting known values gives

v f = kx i 2 m 2 gh f = 250.0 N/m 0.100 kg ( 0.0400 m ) 2 2 ( 9.80 m/s 2 ) ( 0.180 m ) = 0.687 m/s. alignl { stack { size 12{v rSub { size 8{f} } = sqrt { { { ital "kx" rSub { size 8{i} rSup { size 8{2} } } } over {m} } - 2 ital "gh" rSub { size 8{f} } } } {} #" "= sqrt { left ( { {"250" "." 0" N/m"} over {0 "." "100 kg"} } right )"" \( 0 "." "0400"" m" \) rSup { size 8{2} } - 2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( 0 "." "180"" m" \) } {} # " "=0 "." "687"" m/s" "." {}} } {}

Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Applying the science practices: potential energy in a spring

Suppose you are running an experiment in which two 250 g carts connected by a spring (with spring constant 120 N/m) are run into a solid block, and the compression of the spring is measured. In one run of this experiment, the spring was measured to compress from its rest length of 5.0 cm to a minimum length of 2.0 cm. What was the potential energy stored in this system?

Answer

Note that the change in length of the spring is 3.0 cm. Hence we can apply Equation 7.42 to find that the potential energy is PE = (1/2)(120 N/m)(0.030 m) 2 = 0.0541 J.

Questions & Answers

start new n questions too
Emmaunella Reply
summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
definition of sociology of education
Emmaunella
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
ways of perceived deviance indifferent society
Naomi Reply
reasons of joining groups
SAM
to bring development to the nation at large
Hyellafiya
entails of consultative and consensus building from others
Gadama
World first Sociologist?
Abu
What is evolutionary model
Muhammad Reply
Evolution models refer to mathematical and computational representations of the processes involved in biological evolution. These models aim to simulate and understand how species change over time through mechanisms such as natural selection, genetic drift, and mutation. Evolutionary models can be u
faruk
what are the modern trends in religious behaviours
Selekeye Reply
what are social norms
Daniel Reply
shared standards of acceptable behavior by the group or appropriate behavior in a particular institution or those behaviors that are acceptable in a society
Lucius
that is how i understood it
Lucius
examples of societal norms
Diamond
Discuss the characteristics of the research located within positivist and the interpretivist paradigm
Tariro Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask