<< Chapter < Page Chapter >> Page >
v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {}

or

v w = . size 12{v size 8{w}=fλ} {}

This fundamental relationship holds for all types of waves. For water waves, v w size 12{v rSub { size 8{w} } } {} is the speed of a surface wave; for sound, v w size 12{v rSub { size 8{w} } } {} is the speed of sound; and for visible light, v w size 12{v rSub { size 8{w} } } {} is the speed of light, for example.

Applying the science practices: different types of waves

Consider a spring fixed to a wall with a mass connected to its end. This fixed point on the wall exerts a force on the complete spring-and-mass system, and this implies that the momentum of the complete system is not conserved. Now, consider energy. Since the system is fixed to a point on the wall, it does not do any work; hence, the total work done is conserved, which means that the energy is conserved. Consequently, we have an oscillator in which energy is conserved but momentum is not. Now, consider a system of two masses connected to each other by a spring. This type of system also forms an oscillator. Since there is no fixed point, momentum is conserved as the forces acting on the two masses are equal and opposite. Energy for such a system will be conserved, because there are no external forces acting on the spring-two-masses system. It is clear from above that, for momentum to be conserved, momentum needs to be carried by waves. This is a typical example of a mechanical oscillator producing mechanical waves that need a medium in which to propagate. Sound waves are also examples of mechanical waves. There are some waves that can travel in the absence of a medium of propagation. Such waves are called “electromagnetic waves.” Light waves are examples of electromagnetic waves. Electromagnetic waves are created by the vibration of electric charge. This vibration creates a wave with both electric and magnetic field components.

Take-home experiment: waves in a bowl

Fill a large bowl or basin with water and wait for the water to settle so there are no ripples. Gently drop a cork into the middle of the bowl. Estimate the wavelength and period of oscillation of the water wave that propagates away from the cork. Remove the cork from the bowl and wait for the water to settle again. Gently drop the cork at a height that is different from the first drop. Does the wavelength depend upon how high above the water the cork is dropped?

Calculate the velocity of wave propagation: gull in the ocean

Calculate the wave velocity of the ocean wave in [link] if the distance between wave crests is 10.0 m and the time for a sea gull to bob up and down is 5.00 s.

Strategy

We are asked to find v w size 12{v rSub { size 8{w} } } {} . The given information tells us that λ = 10 . 0 m size 12{λ="10" "." 0`"m"} {} and T = 5 . 00 s size 12{T=5 "." "00"`"s"} {} . Therefore, we can use v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {} to find the wave velocity.

Solution

  1. Enter the known values into v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {} :
    v w = 10.0 m 5 .00 s . size 12{v size 8{w}= { {"10" "." 0" m"} over {5 "." "00"" s"} } } {}
  2. Solve for v w size 12{v rSub { size 8{w} } } {} to find v w = 2.00 m/s. size 12{v rSub { size 8{w} } } {}

Discussion

This slow speed seems reasonable for an ocean wave. Note that the wave moves to the right in the figure at this speed, not the varying speed at which the sea gull moves up and down.

Got questions? Get instant answers now!

Transverse and longitudinal waves

A simple wave consists of a periodic disturbance that propagates from one place to another. The wave in [link] propagates in the horizontal direction while the surface is disturbed in the vertical direction. Such a wave is called a transverse wave    or shear wave; in such a wave, the disturbance is perpendicular to the direction of propagation. In contrast, in a longitudinal wave    or compressional wave, the disturbance is parallel to the direction of propagation. [link] shows an example of a longitudinal wave. The size of the disturbance is its amplitude X and is completely independent of the speed of propagation v w size 12{v rSub { size 8{w} } } {} .

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask