<< Chapter < Page Chapter >> Page >

Now let us use [link] to do some further analysis of uniform circular motion as it relates to simple harmonic motion. The triangle formed by the velocities in the figure and the triangle formed by the displacements ( X , x , size 12{X,x,} {} and X 2 x 2 size 12{ sqrt {X rSup { size 8{2} } - x rSup { size 8{2} } } } {} ) are similar right triangles. Taking ratios of similar sides, we see that

v v max = X 2 x 2 X = 1 x 2 X 2 . size 12{ { {v} over {v rSub { size 8{"max"} } } } = { { sqrt {X rSup { size 8{2} } - x rSup { size 8{2} } } } over {X} } = sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

We can solve this equation for the speed v size 12{v} {} or

v = v max 1 x 2 X 2 . size 12{v=v rSub { size 8{"max"} } sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

This expression for the speed of a simple harmonic oscillator is exactly the same as the equation obtained from conservation of energy considerations in Energy and the Simple Harmonic Oscillator . You can begin to see that it is possible to get all of the characteristics of simple harmonic motion from an analysis of the projection of uniform circular motion.

Finally, let us consider the period T size 12{T} {} of the motion of the projection. This period is the time it takes the point P to complete one revolution. That time is the circumference of the circle X size 12{2πX} {} divided by the velocity around the circle, v max size 12{v rSub { size 8{"max"} } } {} . Thus, the period T size 12{T} {} is

T = 2πX v max . size 12{T= { {2πX} over {v rSub { size 8{"max"} } } } } {}

We know from conservation of energy considerations that

v max = k m X . size 12{v rSub { size 8{"max"} } = sqrt { { {k} over {m} } } X} {}

Solving this equation for X / v max size 12{X/v rSub { size 8{"max"} } } {} gives

X v max = m k . size 12{ { {X} over {v rSub { size 8{"max"} } } } = sqrt { { {m} over {k} } } } {}

Substituting this expression into the equation for T size 12{T} {} yields

T = m k . size 12{T=2π sqrt { { {m} over {k} } } "."} {}

Thus, the period of the motion is the same as for a simple harmonic oscillator. We have determined the period for any simple harmonic oscillator using the relationship between uniform circular motion and simple harmonic motion.

Some modules occasionally refer to the connection between uniform circular motion and simple harmonic motion. Moreover, if you carry your study of physics and its applications to greater depths, you will find this relationship useful. It can, for example, help to analyze how waves add when they are superimposed.

Identify an object that undergoes uniform circular motion. Describe how you could trace the simple harmonic motion of this object as a wave.

A record player undergoes uniform circular motion. You could attach dowel rod to one point on the outside edge of the turntable and attach a pen to the other end of the dowel. As the record player turns, the pen will move. You can drag a long piece of paper under the pen, capturing its motion as a wave.

Got questions? Get instant answers now!

Test prep for ap courses

In the equation x = A sin w t, what values can the position x take?

  1. −1 to +1
  2. A to + A
  3. 0
  4. t to t
Got questions? Get instant answers now!

Section summary

A projection of uniform circular motion undergoes simple harmonic oscillation.

Problems&Exercises

(a)What is the maximum velocity of an 85.0-kg person bouncing on a bathroom scale having a force constant of 1 . 50 × 10 6 N/m size 12{1 "." "50" times "10" rSup { size 8{5} } "N/m"} {} , if the amplitude of the bounce is 0.200 cm? (b)What is the maximum energy stored in the spring?

a). 0.266 m/s

b). 3.00 J

Got questions? Get instant answers now!

A novelty clock has a 0.0100-kg mass object bouncing on a spring that has a force constant of 1.25 N/m. What is the maximum velocity of the object if the object bounces 3.00 cm above and below its equilibrium position? (b) How many joules of kinetic energy does the object have at its maximum velocity?

Got questions? Get instant answers now!

At what positions is the speed of a simple harmonic oscillator half its maximum? That is, what values of x / X size 12{x/X} {} give v = ± v max / 2 size 12{v= +- v rSub { size 8{"max"} } /2} {} , where X size 12{X} {} is the amplitude of the motion?

± 3 2 size 12{ +- { { sqrt {3} } over {2} } } {}

Got questions? Get instant answers now!

A ladybug sits 12.0 cm from the center of a Beatles music album spinning at 33.33 rpm. What is the maximum velocity of its shadow on the wall behind the turntable, if illuminated parallel to the record by the parallel rays of the setting Sun?

Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask