<< Chapter < Page Chapter >> Page >
1 2 mv 1 2 = 1 2 mv 1 2 + 1 2 mv 2 2 .

Because the masses are equal, m 1 = m 2 = m size 12{m rSub { size 8{1} } =m rSub { size 8{2} } =m} {} . Algebraic manipulation (left to the reader) of conservation of momentum in the x size 12{x} {} - and y size 12{y} {} -directions can show that

1 2 mv 1 2 = 1 2 mv 1 2 + 1 2 mv 2 2 + mv 1 v 2 cos θ 1 θ 2 .

(Remember that θ 2 size 12{θ rSub { size 8{2} } } {} is negative here.) The two preceding equations can both be true only if

m v 1 v 2 cos θ 1 θ 2 = 0 .

There are three ways that this term can be zero. They are

  • v 1 = 0 : head-on collision; incoming ball stops
  • v 2 = 0 : no collision; incoming ball continues unaffected
  • cos ( θ 1 θ 2 ) = 0 : angle of separation ( θ 1 θ 2 ) is 90º after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play enough pool, you will notice that the angle between the balls is very close to 90º size 12{"90"°} {} after the collision, although it will vary from this value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum , which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional collisions.

Connections to nuclear and particle physics

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in Medical Applications of Nuclear Physics and Particle Physics . Ernest Rutherford, for example, discovered the nature of the atomic nucleus from such experiments.

Test prep for ap courses

Two cars of equal mass approach an intersection. Car A is moving east at a speed of 45 m/s. Car B is moving south at a speed of 35 m/s. They collide inelastically and stick together after the collision, moving as one object. Which of the following statements is true about the center-of-mass velocity of this system?

  1. The center-of-mass velocity will decrease after the collision as a result of lost energy (but not drop to zero).
  2. The center-of-mass velocity will remain the same after the collision since momentum is conserved.
  3. The center-of-mass velocity will drop to zero since the two objects stick together.
  4. The magnitude of the center-of-mass velocity will remain the same, but the direction of the velocity will change.

(b)

Got questions? Get instant answers now!

Car A has a mass of 2000 kg and approaches an intersection with a velocity of 38 m/s directed to the east. Car B has a mass of 3500 kg and approaches the intersection with a velocity of 53 m/s directed 63° north of east. The two cars collide and stick together after the collision. Will the center-of-mass velocity change as a result of the collision? Explain why or why not. Calculate the center-of-mass velocity before and after the collision.

Got questions? Get instant answers now!

Section summary

  • The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into components along perpendicular axes. Choose a coordinate system with the x -axis parallel to the velocity of the incoming particle.
  • Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction of mass 1 (the x -axis), stated by m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2 and along the direction perpendicular to the initial direction (the y -axis) stated by 0 = m 1 v 1 y + m 2 v 2 y .
  • The internal kinetic before and after the collision of two objects that have equal masses is
    1 2 mv 1 2 = 1 2 mv 1 2 + 1 2 mv 2 2 + mv 1 v 2 cos θ 1 θ 2 .
  • Point masses are structureless particles that cannot spin.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask