<< Chapter < Page Chapter >> Page >

Explain why it is not possible to add a scalar to a vector.

Got questions? Get instant answers now!

If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different magnitudes ever add to zero? Can three or more?

Got questions? Get instant answers now!

Problems&Exercises

Use graphical methods to solve these problems. You may assume data taken from graphs is accurate to three digits.

Find the following for path A in [link] : (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

A map of city is shown. The houses are in form of square blocks of side one hundred and twenty meters each. The path of A extends to three blocks towards north and then one block towards east. It is asked to find out the total distance traveled the magnitude and the direction of the displacement from start to finish.
The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side.

(a) 480 m size 12{"480 m"} {}

(b) 379 m size 12{"379 m"} {} , 18.4° size 12{"18" "." "4° east of north"} {} east of north

Got questions? Get instant answers now!

Find the following for path B in [link] : (a) the total distance traveled, and (b) the magnitude and direction of the displacement from start to finish.

Got questions? Get instant answers now!

Find the north and east components of the displacement for the hikers shown in [link] .

north component 3.21 km, east component 3.83 km

Got questions? Get instant answers now!

Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A size 12{A} {} and B size 12{B} {} , as in [link] , then this problem asks you to find their sum R = A + B size 12{"R = A + B"} {} .)

In this figure coordinate axes are shown. Vector A from the origin towards the negative of x axis is shown. From the head of the vector A another vector B is drawn towards the positive direction of y axis. The resultant R of these two vectors is shown as a vector from the tail of vector A to the head of vector B. This vector R is inclined at an angle theta with the negative x axis.
The two displacements A size 12{A} {} and B size 12{B} {} add to give a total displacement R size 12{R} {} having magnitude R size 12{R} {} and direction θ size 12{θ} {} .
Got questions? Get instant answers now!

Suppose you first walk 12.0 m in a direction 20° size 12{"20" { size 12{°} } } {} west of north and then 20.0 m in a direction 40.0° size 12{"40" { size 12{°} } } {} south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A size 12{A} {} and B size 12{B} {} , as in [link] , then this problem finds their sum R = A + B size 12{ bold "R = A + B"} {} .)

In the given figure coordinates axes are shown. Vector A with tail at origin is inclined at an angle of twenty degrees with the positive direction of x axis. The magnitude of vector A is twelve meters. Another vector B is starts from the head of vector A and inclined at an angle of forty degrees with the horizontal. The resultant R of the vectors A and B is also drawn from the tail of vector A to the head of vector B. The inclination of vector R is theta with the horizontal.

19 . 5 m size 12{"19" "." "5 m"} {} , 4 . 65° size 12{4 "." "65°"} {} south of west

Got questions? Get instant answers now!

Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg B size 12{B} {} , which is 20.0 m in a direction exactly 40° size 12{"20" { size 12{°} } } {} south of west, and then leg A size 12{A} {} , which is 12.0 m in a direction exactly 20° size 12{"20" { size 12{°} } } {} west of north. (This problem shows that A + B = B + A size 12{A+B=B+A} {} .)

Got questions? Get instant answers now!

(a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0° size 12{"40.0" { size 12{°} } } north of east (which is equivalent to subtracting B size 12{B} {} from A size 12{A} {} —that is, to finding R = A B size 12{ bold "R'"=A - B} {} ). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0° size 12{"40.0" { size 12{°} } } south of west and then 12.0 m in a direction 20.0° size 12{"20.0" { size 12{ ° } } } {} east of south (which is equivalent to subtracting A size 12{A} {} from B size 12{B} {} —that is, to finding R ′′ = B - A = - R size 12{R''= B – A = -R' } {} ). Show that this is the case.

(a) 26 . 6 m size 12{"26" "." "6 m"} {} , 65 . size 12{"65" "." "1°"} {} north of east

(b) 26 . 6 m size 12{"26" "." "6 m"} {} , 65 . size 12{"65" "." "1°"} {} south of west

Got questions? Get instant answers now!

Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors A size 12{A} {} , B size 12{B} {} , and C size 12{C} {} , all having different lengths and directions. Find the sum A + B + C size 12{ bold "A + B + C"} {} then find their sum when added in a different order and show the result is the same. (There are five other orders in which A size 12{A} {} , B size 12{B} {} , and C size 12{C} {} can be added; choose only one.)

Got questions? Get instant answers now!

Show that the sum of the vectors discussed in [link] gives the result shown in [link] .

52 . 9 m size 12{"52" "." "9 m"} {} , 90 . size 12{"90" "." "1°"} {} with respect to the x -axis.

Got questions? Get instant answers now!

Find the magnitudes of velocities v A size 12{v rSub { size 8{A} } } {} and v B size 12{v rSub { size 8{B} } } {} in [link]

On the graph velocity vector V sub A begins at the origin and is inclined to x axis at an angle of twenty two point five degrees. From the head of vector V sub A another vector V sub B begins. The resultant of the two vectors, labeled V sub tot, is inclined to vector V sub A at twenty six point five degrees and to the vector V sub B at twenty three point zero degrees. V sub tot has a magnitude of 6.72 meters per second.
The two velocities v A size 12{v rSub { size 8{A} } } {} and v B size 12{v rSub { size 8{B} } } {} add to give a total v tot size 12{v rSub { size 8{"tot"} } } {} .
Got questions? Get instant answers now!

Find the components of v tot size 12{v rSub { size 8{"tot"} } } {} along the x - and y -axes in [link] .

x -component 4.41 m/s

y -component 5.07 m/s

Got questions? Get instant answers now!

Find the components of v tot size 12{v rSub { size 8{"tot"} } } {} along a set of perpendicular axes rotated 30° size 12{"30°"} {} counterclockwise relative to those in [link] .

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask