<< Chapter < Page Chapter >> Page >
In part a, a vector of magnitude of nine units and making an angle of theta is equal to zero degrees is drawn from the origin and along the positive direction of x axis. In part b a vector of magnitude of nine units and making an angle of theta is equal to zero degree is drawn from the origin and along the positive direction of x axis. Then a vertical arrow from the head of the horizontal arrow is drawn. In part c a vector D of magnitude ten point three is drawn from the tail of the horizontal vector at an angle theta is equal to twenty nine point one degrees from the positive direction of x axis. The head of the vector D meets the head of the vertical vector. A scale is shown parallel to the vector D to measure its length. Also a protractor is shown to measure the inclination of the vectorD.
Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking in a city considered in [link] . (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the head of the north-pointing vector to form the sum or resultant vector     D size 12{A} {} . The length of the arrow D size 12{A} {} is proportional to the vector's magnitude and is measured to be 10.3 units . Its direction, described as the angle with respect to the east (or horizontal axis) θ size 12{θ} {} is measured with a protractor to be 29 . size 12{"29" "." 1°} {} .

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor .

In part a, a vector of magnitude of nine units and making an angle theta is equal to zero degree is drawn from the origin and along the positive direction of x axis.

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head of the first vector .

In part b, a vector of magnitude of nine units and making an angle theta is equal to zero degree is drawn from the origin and along the positive direction of x axis. Then a vertical vector from the head of the horizontal vector is drawn.

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have only two vectors, so we have finished placing arrows tip to tail .

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector . This is the resultant    , or the sum, of the other vectors.

In part c, a vector D of magnitude ten point three is drawn from the tail of the horizontal vector at an angle theta is equal to twenty nine point one degrees from the positive direction of the x axis. The head of the vector D meets the head of the vertical vector. A scale is shown parallel to the vector D to measure its length. Also a protractor is shown to measure the inclination of the vector D.

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the precision of the measuring tools. It is valid for any number of vectors.

Adding vectors graphically using the head-to-tail method: a woman takes a walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths (displacements) on a flat field. First, she walks 25.0 m in a direction 49.0° size 12{"49" "." "0°"} {} north of east. Then, she walks 23.0 m heading 15.0° size 12{"15" "." "°°"} {} north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A size 12{A} {} , the second B size 12{B} {} , and the third C size 12{C} {} , making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted R size 12{R} {} .

Solution

(1) Draw the three displacement vectors.

On the graph a vector of magnitude twenty three meters and inclined above the x axis at an angle theta-b equal to fifteen degrees is shown. This vector is labeled as B.

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

In this figure a vector A with a positive slope is drawn from the origin. Then from the head of the vector A another vector B with positive slope is drawn and then another vector C with negative slope from the head of the vector B is drawn which cuts the x axis.

(3) Draw the resultant vector, R size 12{R} {} .

In this figure a vector A with a positive slope is drawn from the origin. Then from the head of the vector A another vector B with positive slope is drawn and then another vector C with negative slope from the head of the vector B is drawn which cuts the x axis. From the tail of the vector A a vector R of magnitude of fifty point zero meters and with negative slope of seven degrees is drawn. The head of this vector R meets the head of the vector C. The vector R is known as the resultant vector.

(4) Use a ruler to measure the magnitude of R size 12{R} {} , and a protractor to measure the direction of R size 12{R} {} . While the direction of the vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down and measure the angle between the eastward axis and the vector.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask