<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain the phenomenon of dispersion and discuss its advantages and disadvantages.

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or a diamond. (See [link] .)

Part a of this figure shows the colors produced by a rainbow. Part b shows the colors produced by a prism.
The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors are associated with different wavelengths of light, as shown in [link] . When our eye receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors plotted versus wavelength in [link] . What this implies is that white light is spread out according to wavelength in a rainbow. Dispersion is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there is a process that changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon, can occur for any type of wave and always involves wavelength-dependent processes.

Dispersion

Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.

A continuous distribution of colors with their range of wavelength lambda in nanometers, starting with infrared at 800 nanometers. Following infrared is the visible region with red at 700 nanometers, orange, yellow at 600 nanometers, green, blue at 500 nanometers, and violet at 400 nanometers. The distribution ends with ultraviolet at 300 nanometers.
Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of refraction, as we saw in The Law of Refraction . We know that the index of refraction n size 12{n} {} depends on the medium. But for a given medium, n size 12{n} {} also depends on wavelength. (See [link] . Note that, for a given medium, n size 12{n} {} increases as wavelength decreases and is greatest for violet light. Thus violet light is bent more than red light, as shown for a prism in [link] (b), and the light is dispersed into the same sequence of wavelengths as seen in [link] and [link] .

Making connections: dispersion

Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be dispersed according to wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus separating and spreading out various wavelengths. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it is dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called empty space.

Questions & Answers

how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
I have a exam on 12 february
David Reply
what is velocity
Jiti
the speed of something in a given direction.
Ju
what is a magnitude in physics
Jiti Reply
Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be capable of producing the same force repeatedly.
Giovani Reply
What is meant by dielectric charge?
It's Reply
what happens to the size of charge if the dielectric is changed?
Brhanu Reply
omega= omega not +alpha t derivation
Provakar Reply
u have to derivate it respected to time ...and as w is the angular velocity uu will relace it with "thita × time""
Abrar
do to be peaceful with any body
Brhanu Reply
the angle subtended at the center of sphere of radius r in steradian is equal to 4 pi how?
Saeed Reply
if for diatonic gas Cv =5R/2 then gamma is equal to 7/5 how?
Saeed
define variable velocity
Ali Reply
displacement in easy way.
Mubashir Reply
binding energy per nucleon
Poonam Reply
why God created humanity
Manuel Reply
Because HE needs someone to dominate the earth (Gen. 1:26)
Olorunfemi
why god made humenity
Ali
and he to multiply
Owofemi
stuff happens
Ju
God plays dice
Ju
Is the object in a conductor or an insulator? Justify your answer. whats the answer to this question? pls need help figure is given above
Jun Reply
ok we can say body is electrically neutral ...conductor this quality is given to most metalls who have free electron in orbital d ...but human doesn't have ...so we re made from insulator or dielectric material ... furthermore, the menirals in our body like k, Fe , cu , zn
Abrar
when we face electric shock these elements work as a conductor that's why we got this shock
Abrar
how do i calculate the pressure on the base of a deposit if the deposit is moving with a linear aceleration
ximena Reply
Practice Key Terms 2

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask