<< Chapter < Page Chapter >> Page >
This module teaches about multiplying binomials. Specifically about common patterns that can be memorized and using the "FOIL" method.

The following three formulae should be memorized.

x + a 2 = x 2 + 2 ax + a 2 size 12{ left (x+a right ) rSup { size 8{2} } =x rSup { size 8{2} } +2 ital "ax"+a rSup { size 8{2} } } {}
x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}
x + a x a = x 2 a 2 size 12{ left (x+a right ) left (x - a right )=x rSup { size 8{2} } - a rSup { size 8{2} } } {}

It is important to have these three formulae on the top of your head. It is also nice to be able to show why these formulae work, for instance by using FOIL. But the most important thing of all is knowing what these three formulae mean, and how to use them .

These three are all “algebraic generalizations,” as discussed in the first unit on functions. That is, they are equations that hold true for any values of x size 12{x} {} and a size 12{a} {} . It may help if you think of the second equation above as standing for:

Anthing Anything Else 2 = Anything 2 2 Anything Else 2 size 12{ left ("Anthing" - "Anything Else" right ) rSup { size 8{2} } ="Anything" rSup { size 8{2} } - 2 left ("Anything Else" right ) rSup { size 8{2} } } {} For instance, suppose the Anything (or x size 12{x} {} ) is 5, and the Anything Else (or a size 12{a} {} ) is 3.

x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {} , when x = 5 size 12{x=5} {} , a = 3 size 12{a=3} {} .

  • 5 3 2 = ? 5 2 2 3 5 + 3 2 size 12{5 - 3 rSup { size 8{2} } { {}={}} cSup { size 8{?} } 5 rSup { size 8{2} } - 2 left (3 right ) left (5 right )+3 rSup { size 8{2} } } {}
  • 2 2 = ? 25 30 + 9 size 12{2 rSup { size 8{2} } { {}={}} cSup { size 8{?} } "25" - "30"+9} {}
  • 4 = 4 size 12{4=4} {}

It worked! Now, let’s leave the Anything as x size 12{x} {} , but play with different values of a size 12{a} {} .

More examples of x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}

a = 1 : ( x - 1 ) 2 = x 2 - 2 x + 1 a = 2 : ( x - 2 ) 2 = x 2 - 4 x + 4 a = 3 : ( x - 3 ) 2 = x 2 - 6 x + 9 a = 5 : ( x - 5 ) 2 = x 2 - 10 x + 25 a = 10 : ( x - 10 ) 2 = x 2 - 20 x + 100

Once you’ve seen a few of these, the pattern becomes evident: the number doubles to create the middle term (the coefficient of x size 12{x} {} ), and squares to create the final term (the number).

The hardest thing about this formula is remembering to use it . For instance, suppose you are asked to expand:

2y 6 2 size 12{ left (2y - 6 right ) rSup { size 8{2} } } {}

There are three ways you can approach this.

2y 6 2 , computed three different ways
Square each term FOIL Using the formula above
2y 6 2 2y 2 2 6 2y + 6 2 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) rSup { size 8{2} } {} ##={} {} # left (2y right ) rSup { size 8{2} } - 2 left (6 right ) left (2y right )+6 rSup { size 8{2} } {} ## ={} {} # 4y rSup { size 8{2} } - "24"y+"36"{}} } {} 2y 6 2y 6 2y 2y 2y 6 2y 6 + 36 4y 2 12 y 12 y + 36 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) left (2y - 6 right ) {} ##={} {} # left (2y right ) left (2y right ) - left (2y right )6 - left (2y right )6+"36" {} ## ={} {} # 4y rSup { size 8{2} } - "12"y - "12"y+"36" {} ##={} {} # 4y rSup { size 8{2} } - "24"y+"36"{} } } {} 2y 6 2 2y 2 2 6 2y + 6 2 4y 2 24 y + 36 size 12{ matrix { {} # left (2y - 6 right ) rSup { size 8{2} } {} ##={} {} # left (2y right ) rSup { size 8{2} } - 2 left (6 right ) left (2y right )+6 rSup { size 8{2} } {} ## ={} {} # 4y rSup { size 8{2} } - "24"y+"36"{}} } {}

Did it work? If a formula is true, it should work for any y size 12{y} {} -value; let’s test each one with y = 5 size 12{y=5} {} . (Note that the second two methods got the same answer, so we only need to test that once.)

2y 6 2 = ? 4y 2 36 2 5 6 2 = ? 4y 2 36 10 6 2 = ? 100 36 4 2 = ? 64 size 12{ matrix { left (2y - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "36" {} ##left (2 cdot 5 - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "36" {} ## left ("10" - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "100" - "36" {} ##4 rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "64"{} } } {} 2y 6 2 = ? 4y 2 24 y + 36 2 5 6 2 = ? 4 5 2 24 5 + 36 10 6 2 = ? 100 120 + 36 4 2 = ? 16 size 12{ matrix { left (2y - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4y rSup { size 8{2} } - "24"y+"36" {} ##left (2 cdot 5 - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # 4 left (5 right ) rSup { size 8{2} } - "24" cdot 5+"36" {} ## left ("10" - 6 right ) rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "100" - "120"+"36" {} ##4 rSup { size 8{2} } {} # { {}={}} cSup { size 8{?} } {} # "16"{} } } {}

We conclude that squaring each term individually does not work. The other two methods both give the same answer, which works.

The first method is the easiest, of course. And it looks good. 2y 2 size 12{ left (2y right ) rSup { size 8{2} } } {} is indeed 4y 2 size 12{4y rSup { size 8{2} } } {} . And 6 2 size 12{6 rSup { size 8{2} } } {} is indeed 36. But as you can see, it led us to a false answer —an algebraic generalization that did not hold up.

I just can’t stress this point enough. It sounds like a detail, but it causes errors all through Algebra II and beyond. When you’re adding or subtracting things, and then squaring them, you can’t just square them one at a time. Mathematically, x + a 2 x 2 + a 2 size 12{ left (x+a right ) rSup { size 8{2} }<>x rSup { size 8{2} } +a rSup { size 8{2} } } {} . You can confirm this with numbers all day. 7 + 3 2 = 100 size 12{ left (7+3 right ) rSup { size 8{2} } ="100"} {} , but 7 2 + 3 2 = 58 size 12{7 rSup { size 8{2} } +3 rSup { size 8{2} } ="58"} {} . They’re not the same.

So that leaves the other two methods. FOIL will never lead you astray. But the third approach, the formula, has three distinct advantages.

  1. The formula is faster than FOIL.
  2. Using these formulae is a specific case of the vital mathematical skill of using any formula—learning how to plug numbers and variables into some equation that you’ve been given, and therefore understanding the abstraction that formulae represent.
  3. Before this unit is done, we will be completing the square, which requires running that particular formula backward —which you cannot do with FOIL.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Quadratic functions. OpenStax CNX. Mar 10, 2011 Download for free at http://cnx.org/content/col11284/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quadratic functions' conversation and receive update notifications?

Ask