<< Chapter < Page Chapter >> Page >
Compares the efficiency of frequency domain and time domain filtering.

To determine for what signal and filter durations a time- or frequency-domain implementation would be the most efficient, weneed only count the computations required by each. For the time-domain, difference-equation approach, we need N x q 2 q 1 . The frequency-domain approach requires three Fourier transforms, eachrequiring 5 K 2 2 logbase --> K computations for a length- K FFT, and the multiplication of two spectra( 6 K computations). The output-signal-duration-determined length must be at least N x q . Thus, we must compare N x q 2 q 1 6 N x q 5 N x q 2 logbase --> N x q Exact analytic evaluation of this comparison is quite difficult (we have a transcendental equation to solve). Insight into thiscomparison is best obtained by dividing by N x q . 2 q 1 6 5 2 logbase --> N x q With this manipulation, we are evaluating the number of computations per sample. For any given value of the filter'sorder q , the right side, the number of frequency-domain computations, will exceed the left ifthe signal's duration is long enough. However, for filter durations greater than about 10, as long as the input is atleast 10 samples, the frequency-domain approach is faster so long as the FFT's power-of-two constraint is advantageous .

The frequency-domain approach is not yet viable; what will we do when the input signal is infinitely long? Thedifference equation scenario fits perfectly with the envisioned digital filtering structure , but so far we have required the input to have limited duration (so that we could calculateits Fourier transform). The solution to this problem is quite simple: Section the input into frames, filter each, and add theresults together. To section a signal means expressing it as a linear combination of length- N x non-overlapping "chunks." Because the filter is linear, filtering a sum of terms is equivalent to summing the results offiltering each term.

x n m x n m N x y n m y n m N x
As illustrated in [link] , note that each filtered section has a duration longer than the input.Consequently, we must literally add the filtered sections together, not just butt them together.

The noisy input signal is sectioned into length-48 frames, each of which is filtered using frequency-domaintechniques. Each filtered section is added to other outputs that overlap to create the signal equivalent to havingfiltered the entire input. The sinusoidal component of the signal is shown as the red dashed line.

Computational considerations reveal a substantial advantage for a frequency-domain implementation over a time-domain one. The numberof computations for a time-domain implementation essentially remains constant whether we section the input or not. Thus, the number ofcomputations for each output is 2 q 1 . In the frequency-domain approach, computation counting changes because we need only compute the filter'sfrequency response H k once, which amounts to a fixed overhead. We need only compute two DFTs and multiply them to filter a section. Letting N x denote a section's length, the number of computations for a section amounts to N x q 2 logbase --> N x q 6 N x q . In addition, we must add the filtered outputs together; the number of terms to add corresponds to the excessduration of the output compared with the input ( q ). The frequency-domain approach thus requires 2 logbase --> N x q 6 q N x q computations per output value. For even modest filter orders, the frequency-domain approach is much faster.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask