<< Chapter < Page Chapter >> Page >

In contrast, when a force exerted on the system has a component in the direction of motion, such as in [link] (d), work is done—energy is transferred to the briefcase. Finally, in [link] (e), energy is transferred from the briefcase to a generator. There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement downward. This makes θ = 180 º size 12{θ="180"°} {} , and cos 180 º = –1 size 12{"cos 180"°= +- 1} {} ; therefore, W size 12{W} {} is negative.

Calculating work

Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI units, work and energy are measured in newton-meters . A newton-meter is given the special name joule    (J), and 1 J = 1 N m = 1 kg m 2 /s 2 size 12{1" J"=1" N" cdot m=1" kg" cdot m rSup { size 8{2} } "/s" rSup { size 8{2} } } {} . One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of about 1 meter.

Calculating the work you do to push a lawn mower across a large lawn

How much work is done on the lawn mower by the person in [link] (a) if he exerts a constant force of 75 . 0 N size 12{"75" "." 0" N"} {} at an angle 35 º size 12{"35"°} {} below the horizontal and pushes the mower 25 . 0 m size 12{"25" "." 0" m"} {} on level ground? Convert the amount of work from joules to kilocalories and compare it with this person’s average daily intake of 10 , 000 kJ size 12{"10","000"" kJ"} {} (about 2400 kcal size 12{"2400"" kcal"} {} ) of food energy. One calorie (1 cal) of heat is the amount required to warm 1 g of water by 1 º C size 12{1°C} {} , and is equivalent to 4 . 184 J size 12{4 "." "184"" J"} {} , while one food calorie (1 kcal) is equivalent to 4184 J size 12{"4184"" J"} {} .

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the equation W = Fd cos θ size 12{W= ital "Fd"" cos"θ} {} . The force, angle, and displacement are given, so that only the work W size 12{W} {} is unknown.

Solution

The equation for the work is

W = Fd cos θ . size 12{W= ital "Fd"" cos"θ} {}

Substituting the known values gives

W = 75.0 N 25.0 m cos 35.0º = 1536 J = 1.54 × 10 3 J. alignl { stack { size 12{W= left ("75" "." "0 N" right ) left ("25" "." "0 m" right )"cos " left ("35" "." 0° right )} {} #size 12{" "="1536"" J"=1 "." "54" times "10" rSup { size 8{3} } " J" "." } {} } } {}

Converting the work in joules to kilocalories yields W = ( 1536 J ) ( 1 kcal / 4184 J ) = 0 . 367 kcal size 12{W= \( "1536"`J \) \( 1`"kcal"/"4184"`J \) =0 "." "367"`"kcal"} {} . The ratio of the work done to the daily consumption is

W 2400 kcal = 1 . 53 × 10 4 . size 12{ { {W} over {"2400"`"kcal"} } =1 "." "53" times "10" rSup { size 8{ - 4} } "." } {}

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work and more than 90% is converted to thermal energy or stored as chemical energy in fat.

Section summary

  • Work is the transfer of energy by a force acting on an object as it is displaced.
  • The work W size 12{W} {} that a force F size 12{F} {} does on an object is the product of the magnitude F size 12{F} {} of the force, times the magnitude d size 12{d} {} of the displacement, times the cosine of the angle θ size 12{q} {} between them. In symbols,
    W = Fd cos θ . size 12{W= ital "Fd""cos"θ "." } {}
  • The SI unit for work and energy is the joule (J), where 1 J = 1 N m = 1 kg m 2 /s 2 size 12{1" J"=1" N" cdot m="1 kg" cdot m rSup { size 8{2} } "/s" rSup { size 8{2} } } {} .
  • The work done by a force is zero if the displacement is either zero or perpendicular to the force.
  • The work done is positive if the force and displacement have the same direction, and negative if they have opposite direction.

Conceptual questions

Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.

Problems&Exercises

How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force of 5.00 N? Express your answer in joules and kilocalories.

3 . 00  J = 7 . 17 × 10 4  kcal alignl { stack { size 12{3 "." "00"" J"={}} {} #size 12{7 "." "17" times "10" rSup { size 8{ - 4} } " kcal"} {} } } {}

A 75.0-kg person climbs stairs, gaining 2.50 meters in height. Find the work done to accomplish this task.

(a) Calculate the work done on a 1500-kg elevator car by its cable to lift it 40.0 m at constant speed, assuming friction averages 100 N. (b) What is the work done on the lift by the gravitational force in this process? (c) What is the total work done on the lift?

(a) 5 . 92 × 10 5 J size 12{5 "." "92" times "10" rSup { size 8{5} } " J"} {}

(b) 5 . 88 × 10 5 J size 12{ - 5 "." "88" times "10" rSup { size 8{5} } " J"} {}

(c) The net force is zero.

Calculate the work done by an 85.0-kg man who pushes a crate 4.00 m up along a ramp that makes an angle of 20 . 0 º size 12{"20" "." 0°} {} with the horizontal. (See [link] .) He exerts a force of 500 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate and on his body to get up the ramp.

A person is pushing a heavy crate up a ramp. The force vector F applied by the person is acting parallel to the ramp.
A man pushes a crate up a ramp.
3 . 14 × 10 3 J size 12{3 "." "14" times "10" rSup { size 8{3} } " J"} {}

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60 . 0 º size 12{"60" "." 0°} {} slope at constant speed, as shown in [link] . The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?

A person on a rescue sled is shown being pulled up a slope. The slope makes an angle of sixty degrees from the horizontal. The weight of the person is shown by vector w acting vertically downward. The tension in the rope depicted by vector T is along the incline in the upward direction; vector f depicting frictional force is also acting in the same direction.
A rescue sled and victim are lowered down a steep slope.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 5 - work and energy. OpenStax CNX. Jan 02, 2016 Download for free at https://legacy.cnx.org/content/col11946/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 5 - work and energy' conversation and receive update notifications?

Ask