<< Chapter < Page Chapter >> Page >
Presents leasts squares estimation in subspaces of Hilbert spaces, with applications.

Projections with orthonormal bases

Having an orthonormal basis for the subspace of interest significantly simplifies the projection operator.

Lemma 1 Let x X , a Hilbert space, and let S be a subspace of X . If { b 1 , b 2 , ... } is an orthonormal basis for S , then the closest point s 0 S to x is given by s 0 = i x , b i b i .

We begin by noting that

i x , b i b i = i x - s 0 + s 0 , b i b i = i x - s 0 , b i b i + i s 0 , b i b i .

Now, since s 0 is the projection of x onto S , we must have that x - s 0 S , and so for each basis element b i we must have x - s 0 , b i = 0 . Additionally, since s 0 S and { b 1 , b 2 , ... } is an orthonormal basis for S , we must have that i s 0 , b i b i = s 0 . Thus, we obtain

i x , b i b i = s 0 ,

proving the lemma.

Application: communications receiver

Consider the case of a communications receiver that records a continuous-time signal r ( t ) = s ( t ) + n ( t ) over 0 t 1 , where s ( t ) is one of m codeword signals { s 1 ( t ) , ... , s m ( t ) } , and n ( t ) is additive white Gaussian noise. The receiver must make the best possible decision on the observed codeword given the reading r ( t ) ; this usually involves removing as much of the noise as possible from r ( t ) .

We analyze this problem in the context of the Hilbert space L 2 [ 0 , 1 ] . To remove as much of the noise as possible, we define the subspace S = span ( { s 1 ( t ) , ... , s m ( t ) } ) . Anything that is not contained in this subspace is guaranteed to be part of the noise n ( t ) . Now, to obtain the projection into S , we need to find an orthonormal basis { e 1 ( t ) , ... , e n ( t ) } for S , which can be done for example by applying the Gram-Schmidt procedure on the vectors { s 1 ( t ) , ... , s m ( t ) } . The projection is then obtained according to the lemma as

r S ( t ) = i = 1 n r ( t ) , e i ( t ) e i ( t ) ,

where r ( t ) , e i ( t ) = 0 1 r ( t ) e i ( t ) d t .

After the projection is obtained, an optimal receiver proceeds by finding the value of k that minimizes the distance

d 2 ( r S ( t ) , s k ( t ) ) = 0 1 | r S ( t ) - s k ( t ) | 2 d t = 0 1 r S ( t ) 2 d t + 0 1 s k ( t ) 2 d t - 2 0 1 r S ( t ) s k ( t ) 2 d t ;

note here that the first term does not depend on k , so it suffices to find the value of k that minimizes the “cost”

c k : = 0 1 s k ( t ) 2 d t - 2 0 1 r S ( t ) s k ( t ) 2 d t = s k ( t ) , s k ( t ) - 2 r S ( t ) , s k ( t ) = s k ( t ) , s k ( t ) - 2 i = 1 n r ( t ) , e i ( t ) e i ( t ) , s k ( t ) = s k ( t ) , s k ( t ) - 2 i = 1 n r ( t ) , e i ( t ) e i ( t ) , s k ( t ) .

In practice, the codeword signals are designed so that their norms s k ( t ) 2 = s k ( t ) , s k ( t ) are all equal. This design choice reduces the problem above to finding the value of k that maximizes the score

c k ' : = i = 1 n r ( t ) , e i ( t ) e i ( t ) , s k ( t ) .

Thus, the receiver can be designed according to the diagram in [link] .

Diagram of a communications receiver designed in accordance with the projection theorem.

Least squares approximation in hilbert spaces

Let y 1 , ... , u n be elements of a Hilbert space X and define the closed, finite-dimensional subspace of X given by S = span ( y 1 , ... , y n ) . We wish to find the best approximation of x in terms of the vectors y i , that is, the linear combination i = 1 n a i y i with the smallest error e = x - i = 1 n a i y i . To measure the size of the error, we use the induced norm e = x - i = 1 n a i y i .

To solve this problem, we rely on the projection theorem: we are indeed looking for the closest point to x in S = span ( y 1 , ... , y n ) . The projection theorem tells us that the closest point s 0 = i = 1 n a i y i must give x - s 0 S , i.e., e S , which implies in turn that x - i = 1 n a i y i , y j = 0 for all j = 1 , ... , n . The requirement can be rewritten as x , y j = i = 1 n a i y i , y j = i = 1 n a i y i , y j for each j = 1 , ... , n . These requirements can be collected and written in matrix form as

Questions & Answers

the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
what is cell divisoin?
Aron Reply
Diversity of living thing
ISCONT
what is cell division
Aron Reply
Cell division is the process by which a single cell divides into two or more daughter cells. It is a fundamental process in all living organisms and is essential for growth, development, and reproduction. Cell division can occur through either mitosis or meiosis.
AI-Robot
What is life?
Allison Reply
life is defined as any system capable of performing functions such as eating, metabolizing,excreting,breathing,moving,Growing,reproducing,and responding to external stimuli.
Mohamed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal theory. OpenStax CNX. Oct 18, 2013 Download for free at http://legacy.cnx.org/content/col11542/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal theory' conversation and receive update notifications?

Ask