<< Chapter < Page Chapter >> Page >

- Ngược lại thì sang bước (c)

c- Cập nhật các giá trị mới :

.Tính pivot

.Tính ma trận chuyển cơ sở k

.Tính A ¯ k + 1 = μ k A ¯ k size 12{ {overline {A}} rSub { size 8{k+1} } =μ rSup { size 8{k} } {overline {A}} rSub { size 8{k} } } {}

.Tính b ¯ k + 1 = μ k b ¯ k size 12{ {overline {b}} rSub { size 8{k+1} } =μ rSup { size 8{k} } {overline {b}} rSub { size 8{k} } } {}

.Tăng số lần lặp k=k+1.

Quay về bước b

Ví dụ

Giải bài toán quy hoạch tuyến tính sau đây bằng phương pháp đơn hình cải tiến :

max z ( x ) = 2x 1 + x 2 x 1 x 2 + x 3 = 3 x 1 + 2x 2 + x 4 = 6 x 1 + 2x 2 + x 5 = 2 x j 0 ( j = 1,2,3,4,5 ) { { alignl { stack { size 12{"max z" \( x \) ="2x" rSub { size 8{1} } +x rSub { size 8{2} } } {} #alignl { stack { left lbrace x rSub { size 8{1} } - x rSub { size 8{2} } +x rSub { size 8{3} } =3 {} #right none left lbrace x rSub { size 8{1} } +"2x" rSub { size 8{2} } +x rSub { size 8{4} } =6 {} # right none left lbrace - x rSub { size 8{1} } +"2x" rSub { size 8{2} } +x rSub { size 8{5} } =2 {} #right no } } lbrace {} # x rSub { size 8{j} }>= "0 " \( j="1,2,3,4,5" \) {} } } {}

Bước khởi tạo

A ¯ 0 = A = 1 1 1 0 0 1 2 0 1 0 1 2 0 0 1 b ¯ 0 = 3 6 2 N 0 B 0 alignl { stack { size 12{ {overline {A}} rSub { size 8{0} } =A= left [ matrix {1 {} # - 1 {} # \lline {} # 1 {} # 0 {} # 0 {} ## 1 {} # 2 {} # \lline {} # 0 {} # 1 {} # 0 {} ##- 1 {} # 2 {} # \lline {} # 0 {} # 0 {} # 1{} } right ]" " {overline {b}} rSub { size 8{0} } = left [ matrix { 3 {} ##6 {} ## 2} right ]} {} #" N" rSub { size 8{0} } " B" rSub { size 8{0} } {} } } {}

c T = 2 1 0 0 0 c N 0 T c B 0 T alignl { stack { size 12{c rSup { size 8{T} } = left [ matrix {2 {} # 1 {} # \lline {} # 0 {} # 0 {} # 0{} } right ]} {} # " c" rSub { size 8{N rSub { size 6{0} } } } rSup {T} size 12{" c" rSub {B rSub { size 6{0} } } rSup {T} } {}} } {}

Bước lặp k=0

x 3 x 4 x 5 righ 3 6 2 righ x N 0 = 0 righ x B 0 = x 0 = size 12{x rSup { size 8{0} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{0} } } } =alignl { stack {left [x rSub {3} {} # right ]left [ size 12{x rSub {4} } {} # right ]left [ size 12{x rSub {5} } {} # righ]} } size 12{ \[ \] }= {overline {b}} rSub {0} size 12{ {}=alignl { stack {left [3 {} # right ]left [6 {} # right ]left [2 {} # righ]} } \[ \] } {} #right ] left [x rSub {N rSub { size 6{0} } } size 12{ {}=0} {} #righ]} } \[ \]} {}

= 0 0 0 3 6 2 righ z ( x 0 ) = c B 0 T b ¯ 0 size 12{z \( x rSup { size 8{0} } \) =c rSub { size 8{B rSub { size 6{0} } } } rSup {T} {overline { size 12{b} }} rSub {0} size 12{ {}= left [0" 0 0" right ] alignl { stack {left [3 {} # right ]left [6 {} # right ]left [2 {} # righ]} } \[ \] =0}} {}

= 2 1 0 0 0 0 0 0 1 -1 1 0 0 1 2 0 1 0 1 2 0 0 1 righ c ¯ 0 T = c T c B 0 T A ¯ 0 size 12{ {overline {c}} rSub { size 8{0} } rSup { size 8{T} } =c rSup { size 8{T} } - c rSub { size 8{B rSub { size 6{0} } } } rSup {T} {overline { size 12{A} }} rSub {0} size 12{ {}= left [2" 1 0 0 0" right ] - left ["0 0 0" right ]alignl { stack { left [" "1" -1 1 0 0 " {} #right ] left [" 1 2 0 1 0" {} #right ] left [ - 1" 2 0 0 1" {} #righ]} } \[ \]= left [2" 1 0 0 0" right ]}} {}

1 1 1 righ [ ] 3 6 2 righ size 12{alignl { stack { left [" "1 {} #right ] left [" "1 {} #right ] left [ - 1 {} #righ]} } \[ \]alignl { stack { left [3 {} #right ] left [6 {} #right ] left [2 {} #righ]} } \[ \]} {} suy ra pivot : a ¯ 11 = 1 size 12{ {overline {a}} rSub { size 8{"11"} } =1} {}

μ 0 = 1 0 0 1 1 0 1 0 1 size 12{μ rSup { size 8{0} } = left [ matrix { " 1" {} # 0 {} # 0 {} ##- 1 {} # 1 {} # 0 {} ## " 1" {} # 0 {} # 1{}} right ]} {}

A ¯ 1 = μ 0 A ¯ 0 = size 12{ {overline {A}} rSub { size 8{1} } =μ rSup { size 8{0} } {overline {A}} rSub { size 8{0} } ={}} {} 1 0 0 1 1 0 1 0 1 size 12{ left [ matrix { " 1" {} # 0 {} # 0 {} ##- 1 {} # 1 {} # 0 {} ## " 1" {} # 0 {} # 1{}} right ]} {} 1 -1 1 0 0 1 2 0 1 0 1 2 0 0 1 righ size 12{ alignl { stack { left [" "1" -1 1 0 0 " {} #right ] left [" 1 2 0 1 0" {} #right ] left [ - 1" 2 0 0 1" {} #righ]} } \[ \]} {} = 1 -1 1 0 0 0 3 -1 1 0 0 1 1 0 1 righ size 12{alignl { stack { left [1" -1 1 0 0" {} #right ] left ["0 3 -1 1 0" {} #right ] left ["0 1 1 0 1" {} #righ]} } \[ \]} {}

b ¯ 1 = μ 0 b ¯ 0 = size 12{ {overline {b}} rSub { size 8{1} } =μ rSup { size 8{0} } {overline {b}} rSub { size 8{0} } ={}} {} 1 0 0 1 1 0 1 0 1 size 12{ left [ matrix { " 1" {} # 0 {} # 0 {} ##- 1 {} # 1 {} # 0 {} ## " 1" {} # 0 {} # 1{}} right ]} {} 3 6 2 righ size 12{alignl { stack { left [3 {} #right ] left [6 {} #right ] left [2 {} #righ]} } \[ \]} {} = 3 3 5 righ size 12{alignl { stack { left [3 {} #right ] left [3 {} #right ] left [5 {} #righ]} } \[ \]} {}

Bước lặp k=1

x 1 x 4 x 5 righ 3 3 5 righ x N 1 = 0 righ x B 1 = x 1 = size 12{x rSup { size 8{1} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{1} } } } =alignl { stack {left [x rSub {1} {} # right ]left [ size 12{x rSub {4} } {} # right ]left [ size 12{x rSub {5} } {} # righ]} } size 12{ \[ \] }= {overline {b}} rSub {1} size 12{ {}=alignl { stack {left [3 {} # right ]left [3 {} # right ]left [5 {} # righ]} } \[ \] } {} #right ] left [x rSub {N rSub { size 6{1} } } size 12{ {}=0} {} #righ]} } \[ \]} {}

= 2 0 0 3 3 5 righ z ( x 1 ) = c B 1 T b ¯ 1 size 12{z \( x rSup { size 8{1} } \) =c rSub { size 8{B rSub { size 6{1} } } } rSup {T} {overline { size 12{b} }} rSub {1} size 12{ {}= left [2" 0 0" right ] alignl { stack {left [3 {} # right ]left [3 {} # right ]left [5 {} # righ]} } \[ \] =6}} {}

c ¯ 1 T = c T c B 1 T A ¯ 1 = 2 1 0 0 0 2 0 0 size 12{ {overline {c}} rSub { size 8{1} } rSup { size 8{T} } =c rSup { size 8{T} } - c rSub { size 8{B rSub { size 6{1} } } } rSup {T} {overline { size 12{A} }} rSub {1} size 12{ {}= left [2" 1 0 0 0" right ] - left ["2 0 0" right ]}} {} 1 -1 1 0 0 0 3 -1 1 0 0 1 1 0 1 righ size 12{alignl { stack { left [1" -1 1 0 0" {} #right ] left ["0 3 -1 1 0" {} #right ] left ["0 1 1 0 1" {} #righ]} } \[ \]} {}

= [ 0 3 -2 0 0 ]

1 3 1 righ [ ] 3 3 5 righ size 12{alignl { stack { left [-1 {} #right ] left [" 3" {} #right ] left [ 1 {} #righ]} } \[ \]alignl { stack { left [3 {} #right ] left [3 {} #right ] left [5 {} #righ]} } \[ \]} {} suy ra pivot : a ¯ 22 = 3 size 12{ {overline {a}} rSub { size 8{"22"} } =3} {}

μ 1 = 1 1 3 0 0 1 3 0 0 1 3 1 size 12{μ rSup { size 8{1} } = left [ matrix { 1 {} # " " { {1} over {3} } {} # 0 {} ##0 {} # " " { {1} over {3} } {} # 0 {} ## 0 {} # - { {1} over {3} } {} # 1{}} right ]} {}

A ¯ 2 = μ 1 A ¯ 1 = size 12{ {overline {A}} rSub { size 8{2} } =μ rSup { size 8{1} } {overline {A}} rSub { size 8{1} } ={}} {} 1 1 3 0 0 1 3 0 0 1 3 1 size 12{ left [ matrix {1 {} # " " { {1} over {3} } {} # 0 {} ## 0 {} # " " { {1} over {3} } {} # 0 {} ##0 {} # - { {1} over {3} } {} # 1{} } right ]} {} 1 -1 1 0 0 0 3 -1 1 0 0 1 1 0 1 righ size 12{alignl { stack { left [1" -1 1 0 0" {} #right ] left ["0 3 -1 1 0" {} #right ] left ["0 1 1 0 1" {} #righ]} } \[ \]} {} = 1 0 2 3 1 3 0 0 1 - 1 3 1 3 0 0 0 4 3 - 1 3 1 righ size 12{ alignl { stack { left [1" 0 " { {2} over {3} } " " { {1} over {3} } " 0 " {} #right ] left ["0 1 -" { {1} over {3} } " " { {1} over {3} } " 0" {} #right ] left [0" 0 " { {4} over {3} } " -" { {1} over {3} } " 1" {} #righ]} } \[ \]} {}

b ¯ 2 = μ 1 b ¯ 1 = size 12{ {overline {b}} rSub { size 8{2} } =μ rSup { size 8{1} } {overline {b}} rSub { size 8{1} } ={}} {} 1 1 3 0 0 1 3 0 0 1 3 1 size 12{ left [ matrix { 1 {} # " " { {1} over {3} } {} # 0 {} ##0 {} # " " { {1} over {3} } {} # 0 {} ## 0 {} # - { {1} over {3} } {} # 1{}} right ]} {} 3 3 5 righ size 12{alignl { stack { left [3 {} #right ] left [3 {} #right ] left [5 {} #righ]} } \[ \]} {} = 4 1 4 righ size 12{alignl { stack { left [4 {} #right ] left [1 {} #right ] left [4 {} #righ]} } \[ \]} {}

Bước lặp k=2

x 1 x 2 x 5 righ 4 1 4 righ x N 2 = 0 righ x B 2 = x 2 = size 12{x rSup { size 8{2} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{2} } } } =alignl { stack {left [x rSub {1} {} # right ]left [ size 12{x rSub {2} } {} # right ]left [ size 12{x rSub {5} } {} # righ]} } size 12{ \[ \] }= {overline {b}} rSub {2} size 12{ {}=alignl { stack {left [4 {} # right ]left [1 {} # right ]left [4 {} # righ]} } \[ \] } {} #right ] left [x rSub {N rSub { size 6{2} } } size 12{ {}=0} {} #righ]} } \[ \]} {}

= 2 1 0 4 1 4 righ z ( x 2 ) = c B 2 T b ¯ 2 size 12{z \( x rSup { size 8{2} } \) =c rSub { size 8{B rSub { size 6{2} } } } rSup {T} {overline { size 12{b} }} rSub {2} size 12{ {}= left [2" 1 0" right ] alignl { stack {left [4 {} # right ]left [1 {} # right ]left [4 {} # righ]} } \[ \] =9}} {}

c ¯ 2 T = c T c B 2 T A ¯ 2 = 2 1 0 0 0 2 1 0 size 12{ {overline {c}} rSub { size 8{2} } rSup { size 8{T} } =c rSup { size 8{T} } - c rSub { size 8{B rSub { size 6{2} } } } rSup {T} {overline { size 12{A} }} rSub {2} size 12{ {}= left [2" 1 0 0 0" right ] - left ["2 1 0" right ]}} {} 1 0 2 3 1 3 0 0 1 - 1 3 1 3 0 0 0 4 3 - 1 3 1 righ size 12{ alignl { stack { left [1" 0 " { {2} over {3} } " " { {1} over {3} } " 0 " {} #right ] left ["0 1 -" { {1} over {3} } " " { {1} over {3} } " 0" {} #right ] left [0" 0 " { {4} over {3} } " -" { {1} over {3} } " 1" {} #righ]} } \[ \]} {}

= [ 0 0 -1 -1 0 ] : thoả dấu hiệu tối ưu.

Vậy kết quả của bài toán là :

. Phương án tối ưu x = x2 = 4 1 0 0 4 righ size 12{alignl { stack { left [4 {} #right ] left [1 {} #right ] left [0 {} #right ] left [0 {} #right ] left [4 {} #righ]} } \[ \]} {}

. Giá trị hàm mục tiêu z(x) = 9

Phép tính trên dòng - bảng đơn hình

Các bước thực hiện giải thuật đơn hình cải tiến được trình bày lần lượt trong các bảng, gọi là bảng đơn hình. Trong thực hành, để cập nhật những giá trị mới ta có thể làm như sau :

. Tìm pivot.

. Chia dòng chứa pivot cho pivot.

. Khử các phần tử trên cột chứa pivot.

. Tính dấu hiệu tối ưu.

. Tính giá trị hàm mục tiêu .

c B 0 size 12{c rSub { size 8{B rSub { size 6{0} } } } } {} i B 0 size 12{i rSub { size 8{B rSub { size 6{0} } } } } {} x 1 size 12{x rSub { size 8{1} } } {} x 2 size 12{x rSub { size 8{2} } } {} x 3 size 12{x rSub { size 8{3} } } {} x 4 size 12{x rSub { size 8{4} } } {} x 5 size 12{x rSub { size 8{5} } } {} b ¯ 0 size 12{ {overline {b}} rSub { size 8{0} } } {}
0 3 1 -1 1 0 0 3
0 4 1 2 0 1 0 6
0 5 -1 2 0 0 1 2
c T size 12{c rSup { size 8{T} } } {} 2 1 0 0 0 z(x0)
c ¯ 0 T size 12{ {overline {c}} rSub { size 8{0} } rSup { size 8{T} } } {} 2 1 0 0 0 0
c B 1 size 12{c rSub { size 8{B rSub { size 6{1} } } } } {} i B 1 size 12{i rSub { size 8{B rSub { size 6{1} } } } } {} x 1 size 12{x rSub { size 8{1} } } {} x 2 size 12{x rSub { size 8{2} } } {} x 3 size 12{x rSub { size 8{3} } } {} x 4 size 12{x rSub { size 8{4} } } {} x 5 size 12{x rSub { size 8{5} } } {} b ¯ 1 size 12{ {overline {b}} rSub { size 8{1} } } {}
2 1 1 -1 1 0 0 3
0 4 0 3 -1 1 0 3
0 5 0 1 1 0 1 5
c T size 12{c rSup { size 8{T} } } {} 2 1 0 0 0 z(x1)
c ¯ 1 T size 12{ {overline {c}} rSub { size 8{1} } rSup { size 8{T} } } {} 0 3 -2 0 0 6
c B 2 size 12{c rSub { size 8{B rSub { size 6{2} } } } } {} i B 2 size 12{i rSub { size 8{B rSub { size 6{2} } } } } {} x 1 size 12{x rSub { size 8{1} } } {} x 2 size 12{x rSub { size 8{2} } } {} x 3 size 12{x rSub { size 8{3} } } {} x 4 size 12{x rSub { size 8{4} } } {} x 5 size 12{x rSub { size 8{5} } } {} b ¯ 2 size 12{ {overline {b}} rSub { size 8{2} } } {}
2 1 1 0 2 3 size 12{ { {2} over {3} } } {} 1 3 size 12{ { {1} over {3} } } {} 0 4
1 2 0 1 1 3 size 12{ - { {1} over {3} } } {} 1 3 size 12{ { {1} over {3} } } {} 0 1
0 5 0 0 4 3 size 12{ { {4} over {3} } } {} 1 3 size 12{ - { {1} over {3} } } {} 1 4
c T size 12{c rSup { size 8{T} } } {} 2 1 0 0 0 z(x2)
c ¯ 2 T size 12{ {overline {c}} rSub { size 8{2} } rSup { size 8{T} } } {} 0 0 -1 -1 0 9

Phương pháp biến giả cải biên

Bài toán cải biên

a- Cải biên bài toán quy hoạch tuyến tính

Người ta có thể biến đổi một bài toán quy hoạch tuyến tính chính tắc thành dạng chuẩn bằng cách cộng một cách phù hợp vào vế trái của ràng buộc i một biến giả xn+i  0 để làm xuất hiện ma trận đơn vị. Vì các biến giả cải biên có ảnh hưởng đến hàm mục tiêu nên cũng sẽ có sự cải biên hàm mục tiêu.

Vậy, người ta có thể biến đổi bài toán quy hoạch tuyến tính tổng quát, gọi là bài toán xuất phát, thành bài toán dạng chuẩn, gọi là bài toán cải biên (mở rộng)

Ví dụ :

Biến đổi bài toán quy hoạch tuyến tính sau đây thành dạng chuẩn

max z ( x ) = 2x 1 + x 2 + x 3 x 4 x 1 + 5x 2 + 5x 4 = 25 4x 2 x 3 + 6x 4 = 18 3x 2 + 8x 4 = 28 x j 0 ( j = 1,2,3,4 ) { { alignl { stack { size 12{"max" z \( x \) =2x rSub { size 8{1} } +x rSub { size 8{2} } +x rSub { size 8{3} } - x rSub { size 8{4} } } {} #alignl { stack { left lbrace x rSub { size 8{1} } +5x rSub { size 8{2} } +5x rSub { size 8{4} } ="25" {} #right none left lbrace - 4x rSub { size 8{2} } - x rSub { size 8{3} } +6x rSub { size 8{4} } ="18" {} # right none left lbrace 3x rSub { size 8{2} } +8x rSub { size 8{4} } ="28" {} #right no } } lbrace {} # x rSub { size 8{j} } " ">= "0 " \( j=1,2,3,4 \) {} } } {}

Bài toán xuất phát có các biến, ma trận ràng buộc và chi phí :

1 5 0 5 0 -4 -1 6 0 3 0 8 righ x T = [ x 1 x 2 x 3 x 4 ] A = alignl { stack { size 12{x rSup { size 8{T} } = \[ x rSub { size 8{1} } " x" rSub { size 8{2} } " x" rSub { size 8{3} } " x" rSub { size 8{4} } \]} {} # A=" "alignl { stack {left [1" 5 0 5" {} # right ]left ["0 -4 -1 6" {} # right ]left ["0 3 0 8" {} # righ]} } \[ \] {} #c rSup { size 8{T} } = \[ 2" 1 1 -1" \] {}} } {}

Bằng cách thêm biến giả x5, x6 lần lượt vào ràng buộc 2 và 3 . Ta được bài toán cải biên :

max { z ' ( x ) = 2x 1 + x 2 + x 3 x 4 M ( x 5 + x 6 ) x 1 + 5x 2 + 5x 4 = 25 4x 2 x 3 + 6x 4 + x 5 = 18 3x 2 + 8x 4 + x 6 = 28 x j 0 ( j = 1,2,3,4,5,6 ) { { alignl { stack { size 12{"max"" {" ital {z}} sup { ' } \( x \) =2x rSub { size 8{1} } +x rSub { size 8{2} } +x rSub { size 8{3} } - x rSub { size 8{4} } - M \( x rSub { size 8{5} } +x rSub { size 8{6} } \) } {} #alignl { stack { left lbrace x rSub { size 8{1} } +5x rSub { size 8{2} } +5x rSub { size 8{4} } ="25" {} #right none left lbrace - 4x rSub { size 8{2} } - x rSub { size 8{3} } +6x rSub { size 8{4} } +x rSub { size 8{5} } ="18" {} # right none left lbrace 3x rSub { size 8{2} } +8x rSub { size 8{4} } +x rSub { size 8{6} } ="28" {} #right no } } lbrace {} # x rSub { size 8{j} }>= "0 " \( j=1,2,3,4,5,6 \) {} } } {}

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask