<< Chapter < Page Chapter >> Page >

The arrangement of electrons in the orbitals of an atom is called the electron configuration    of the atom. We describe an electron configuration with a symbol that contains three pieces of information ( [link] ):

  1. The number of the principal quantum shell, n ,
  2. The letter that designates the orbital type (the subshell, l ), and
  3. A superscript number that designates the number of electrons in that particular subshell.

For example, the notation 2 p 4 (read "two–p–four") indicates four electrons in a p subshell ( l = 1) with a principal quantum number ( n ) of 2. The notation 3 d 8 (read "three–d–eight") indicates eight electrons in the d subshell (i.e., l = 2) of the principal shell for which n = 3.

A light blue hemisphere is labeled H. At a location about midway between the center and outer edge of the hemisphere, a small yellow-orange sphere is shown that is labeled with a negative sign. To the right of this diagram is the electron configuration 1 s superscript 1. The superscript is shown in a small yellow-orange circle. This superscript is labeled, “Number of electrons in subshell,” and the s is labeled, “Subshell.”
The diagram of an electron configuration specifies the subshell ( n and l value, with letter symbol) and superscript number of electrons.

The aufbau principle

To determine the electron configuration for any particular atom, we can “build” the structures in the order of atomic numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at a time to the nucleus and one electron to the proper subshell until we have described the electron configurations of all the elements. This procedure is called the Aufbau principle    , from the German word Aufbau (“to build up”). Each added electron occupies the subshell of lowest energy available (in the order shown in [link] ), subject to the limitations imposed by the allowed quantum numbers according to the Pauli exclusion principle. Electrons enter higher-energy subshells only after lower-energy subshells have been filled to capacity. [link] illustrates the traditional way to remember the filling order for atomic orbitals. Since the arrangement of the periodic table is based on the electron configurations, [link] provides an alternative method for determining the electron configuration. The filling order simply begins at hydrogen and includes each subshell as you proceed in increasing Z order. For example, after filling the 3 p block up to Ar, we see the orbital will be 4s (K, Ca), followed by the 3 d orbitals.

This figure includes a chart used to order the filling of electrons into atoms. At the top is a blue circle labeled “1 s.” In a row beneath this circle are 6 additional blue circles labeled “2 s” through “7 s.” A column to the right begins just right of 2 s and contains pink circles labeled 2 p through 7 p. A column to the right begins just right of 3 p and contains yellow circles labeled 3 d through 6 d. No circles are placed to the right of the 7 s and 7 p circles. A final column on the right begins right of 4 d. It includes grey circles labeled, “4 f” and, “5 f.” No circles are placed right of 6 d. Through these circles, arrows are included in the figure pointing down and to the left. The first arrow begins in the upper right and passes through 1 s. The second arrow begins just below and passes through 2 s. The third arrow passes through 2 p and 3 s. The fourth arrow passes through 3 p and 4 s. This pattern of parallel arrows pointing downward to the left continues through all circles completing the pattern 1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d 5 p 6 s 4 f 5 d 6 p 7 s 5 f 6 d 7 p.
The arrow leads through each subshell in the appropriate filling order for electron configurations. This chart is straightforward to construct. Simply make a column for all the s orbitals with each n shell on a separate row. Repeat for p , d , and f . Be sure to only include orbitals allowed by the quantum numbers (no 1 p or 2 d , and so forth). Finally, draw diagonal lines from top to bottom as shown.
In this figure, a periodic table is shown that is entitled, “Electron Configuration Table.” Beneath the table, a square for the element hydrogen is shown enlarged to provide detail. The element symbol, H, is placed in the upper left corner. In the upper right is the number of electrons, 1. The lower central portion of the element square contains the subshell, 1 s. Helium and elements in groups 1 and 2 are shaded blue. In this region, the rows are labeled 1 s through 7 s moving down the table. Groups 3 through 12 are shaded orange, and the rows are labeled 3 d through 6 d moving down the table. Groups 13 through 18, except helium, are shaded pink and are labeled 2 p through 6 p moving down the table. The lanthanide and actinide series across the bottom of the table are shaded grey and are labeled 4 f and 5 f respectively.
This periodic table shows the electron configuration for each subshell. By “building up” from hydrogen, this table can be used to determine the electron configuration for any atom on the periodic table.

We will now construct the ground-state electron configuration and orbital diagram for a selection of atoms in the first and second periods of the periodic table. Orbital diagrams are pictorial representations of the electron configuration, showing the individual orbitals and the pairing arrangement of electrons. We start with a single hydrogen atom (atomic number 1), which consists of one proton and one electron. Referring to [link] or [link] , we would expect to find the electron in the 1 s orbital. By convention, the m s = + 1 2 value is usually filled first. The electron configuration and the orbital diagram are:

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask